20250102 ‐ elastic - cywongg/2025 GitHub Wiki
---
### **1. Exporting Spring Batch Job Run Status to Elasticsearch**
Spring Batch provides metadata about job executions, including the job's status, start time, end time, etc. Here's how you can export this directly to Elasticsearch:
#### **Steps:**
1. **Leverage Spring Batch Listeners**: Use `JobExecutionListener` or `StepExecutionListener` to capture job and step status events and send them to Elasticsearch.
2. **Add Elasticsearch Dependency**:
Add the Elasticsearch client library to your project. For example, using Maven:
```xml
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>4.5.0</version> <!-- Adjust the version as needed -->
</dependency>
-
Implement Job Listener: Create a custom listener to extract job status and send it to Elasticsearch.
import org.springframework.batch.core.JobExecution; import org.springframework.batch.core.listener.JobExecutionListenerSupport; import org.springframework.stereotype.Component; import org.elasticsearch.client.RestHighLevelClient; import org.elasticsearch.action.index.IndexRequest; import org.elasticsearch.common.xcontent.XContentType; @Component public class ElasticsearchJobListener extends JobExecutionListenerSupport { private final RestHighLevelClient elasticsearchClient; public ElasticsearchJobListener(RestHighLevelClient elasticsearchClient) { this.elasticsearchClient = elasticsearchClient; } @Override public void afterJob(JobExecution jobExecution) { try { IndexRequest request = new IndexRequest("spring_batch_jobs") .source("{\"jobName\":\"" + jobExecution.getJobInstance().getJobName() + "\",\"status\":\"" + jobExecution.getStatus() + "\",\"startTime\":\"" + jobExecution.getStartTime() + "\",\"endTime\":\"" + jobExecution.getEndTime() + "\"}", XContentType.JSON); elasticsearchClient.index(request, RequestOptions.DEFAULT); } catch (Exception e) { e.printStackTrace(); } } }
-
Configure Elasticsearch: Configure the
RestHighLevelClient
bean in your Spring configuration.@Configuration public class ElasticsearchConfig { @Bean public RestHighLevelClient elasticsearchClient() { return RestClient.builder(new HttpHost("localhost", 9200, "http")).build(); } }
-
Create a Dashboard in Kibana: Once the data is indexed in Elasticsearch (e.g., under the
spring_batch_jobs
index), you can create visualizations and dashboards in Kibana to monitor job statuses.
Kubernetes exposes batch job statuses via its API, which can be forwarded to Elasticsearch for visualization.
-
Enable Kubernetes API Access: Use the Kubernetes client library or
kubectl
commands to fetch job statuses. For example:- Using the Kubernetes CLI:
kubectl get jobs -o json
- Using the Kubernetes Java Client:
import io.kubernetes.client.openapi.ApiClient; import io.kubernetes.client.openapi.apis.BatchV1Api; import io.kubernetes.client.util.Config; public class KubernetesJobStatusExporter { public static void main(String[] args) throws Exception { ApiClient client = Config.defaultClient(); BatchV1Api batchApi = new BatchV1Api(client); var jobs = batchApi.listJobForAllNamespaces(null, null, null, null, null, null, null, null, null, null); jobs.getItems().forEach(job -> { System.out.println("Job Name: " + job.getMetadata().getName() + ", Status: " + job.getStatus().getSucceeded()); }); } }
- Using the Kubernetes CLI:
-
Index Kubernetes Job Status in Elasticsearch: Write a script or service to fetch job statuses periodically and send them to Elasticsearch. For example, transform the
kubectl get jobs -o json
output into JSON and index it using a REST client.Example using Python and
elasticsearch-py
:import subprocess import json from elasticsearch import Elasticsearch def get_kube_jobs(): result = subprocess.run(['kubectl', 'get', 'jobs', '-o', 'json'], stdout=subprocess.PIPE) return json.loads(result.stdout) def send_to_elasticsearch(jobs): es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) for job in jobs['items']: doc = { 'jobName': job['metadata']['name'], 'namespace': job['metadata']['namespace'], 'status': job['status'] } es.index(index='kube_jobs', body=doc) jobs = get_kube_jobs() send_to_elasticsearch(jobs)
-
Create a Dashboard in Kibana: As with Spring Batch, use the data in Elasticsearch to build visualizations and dashboards in Kibana.
Feature | Spring Batch | Kubernetes Batch Jobs |
---|---|---|
Ease of Integration | Simple if already using Spring Batch | Requires setting up Kubernetes client or kubectl integration |
Effort Required | Minimal if listeners are used | Moderate; needs scripting or a service to poll job statuses |
Granularity | Provides detailed job/step-level insights | Provides job-level insights only |
Data Source | Spring Batch metadata tables | Kubernetes API or kubectl output |
Use Case | Monitoring Spring Batch job execution | Monitoring Kubernetes job execution |
Dashboards | Can create tailored dashboards for Spring Batch jobs | Can create dashboards for all Kubernetes jobs |
- If you are primarily working with Spring Batch: Use the Spring Batch listener approach as it directly integrates with your batch jobs without requiring external tools or significant changes.
-
If you need to monitor Kubernetes jobs in general: Use the Kubernetes API or
kubectl
approach, which provides a broader view of all Kubernetes jobs, including non-Spring Batch jobs.
By integrating both into Elasticsearch, you can create a unified monitoring system for both Spring Batch and Kubernetes jobs. This minimizes effort while maximizing visibility.