SpectralBimeasure - crowlogic/arb4j GitHub Wiki

describe the spectral bimeasure of a harmonizable process mathematically precisely rigorously

A harmonizable process is a generalization of stationary processes that allows for representation through spectral measures. To describe the spectral bimeasure rigorously, we need to understand both weakly and strongly harmonizable processes.

Mathematical Definition and Properties

Let {X(t), t ∈ G} be a second-order stochastic process with values in a complex space. This process is called harmonizable if it admits a spectral representation of the form:

X(t) = ∫ᴳ e^(i⟨t,u⟩) dZ(u)

where Z(·) is a σ-additive L²(P)-valued measure[3][4].

The spectral bimeasure F of this process is defined by:

F(A,B) = E[Z(A)Z(B)]

for A,B Borel sets[3][4]. This bimeasure has the following properties:

  1. F(A,·) and F(·,B) are complex measures for every Borel set A and B[1][2]
  2. F is not necessarily a measure on the product σ-algebra B(G) ⊗ B(G)[1]
  3. The covariance function can be represented as: R(s,t) = ∫∫ e^(i(s'λ-t'μ)) dF(λ,μ)[2][3]

Weak vs. Strong Harmonizability

A process is weakly harmonizable if:

  • F is a bimeasure with finite Frechet variation[2][3]
  • The correlation function can be represented as shown above

A process is strongly harmonizable (or Loeve harmonizable) if:

  • F is a complex-valued measure of finite Vitali variation[2][4]
  • The integral representation coincides with the Lebesgue integral[1]
  • The spectral bimeasure is actually a measure on B(G) ⊗ B(G)[1][2]

Spectral Density

When F is absolutely continuous with respect to Lebesgue measure, we can define the generalized spectral density as:

S(ω,ω') = ∂²F/∂ω∂ω'

This is the Radon-Nikodym derivative of F, and the covariance function can be written as:

k(x,x') = ∫∫ e^(i(ω^T x - ω'^T x')) S(ω,ω') dωdω'[1]

For discrete harmonizable processes, if X(t) has representation:

X(t) = ∑ e^(iλt), t = 0,1,2,...

with E[dY_X(λ₁)dY*_X(λ₂)] = d²F_XX(λ₁,λ₂) = f_XX(λ₁,λ₂)dλ₁dλ₂, then the function f_XX represents the spectral density of the process[5].

The spectral analysis of these processes is more complex than for stationary processes since the spectral mass may not concentrate only on the diagonal line λ = μ[6][7].

Citations: [1] [PDF] Nonstationary multi-output Gaussian processes via harmonizable ... https://proceedings.mlr.press/v151/altamirano22a/altamirano22a.pdf [2] [PDF] c-*/z, - {J5-&A https://ntrs.nasa.gov/api/citations/19890008077/downloads/19890008077.pdf [3] The spectral domain of multivariate harmonizable processes - PNAS https://www.pnas.org/doi/pdf/10.1073/pnas.81.14.4611 [4] 1: Harmonizability and Stochastic Analysis https://www.worldscientific.com/doi/pdf/10.1142/9789811213663_0001 [5] [PDF] A Spectral Estimation of Discrete Harmonizable Process https://www.naturalspublishing.com/download.asp?ArtcID=25597 [6] Spectral analysis for harmonizable processes - Project Euclid https://projecteuclid.org/journals/annals-of-statistics/volume-30/issue-1/Spectral-analysis-for-harmonizable-processes/10.1214/aos/1015362193.pdf [7] [PDF] Nonstationary multi-output Gaussian processes via harmonizable ... https://repositorio.uchile.cl/bitstream/handle/2250/182343/Nonstationary-multi-output-gaussian-processes-via-harmonizable-spectral-mixtures.pdf?sequence=1 [8] Line spectral analysis for harmonizable processes - PMC https://pmc.ncbi.nlm.nih.gov/articles/PMC20166/ [9] [PDF] Spectral Analysis for harmonizable processes - UCSD Math https://mathweb.ucsd.edu/~mrosenbl/papers/Spectral_Analysis_for_Harmonizable_Processes.pdf [10] Conditions for the completeness of the spectral domain of a ... https://www.sciencedirect.com/science/article/pii/S030441499700080X/pdf?md5=ce3775d816daf38b6a8f23bc0684b7d1&pid=1-s2.0-S030441499700080X-main.pdf [11] A Spectral Estimation of Discrete Harmonizable Process https://digitalcommons.aaru.edu.jo/isl/vol12/iss2/1/ [12] An Example of a Harmonizable Process Whose Spectral Domain Is ... https://www.jstor.org/stable/4616207 [13] Harmonizable Nonstationary Processes - SIAM.org https://epubs.siam.org/doi/10.1137/22M1544580 [14] Spectral domains of vector harmonizable processes - ScienceDirect https://www.sciencedirect.com/science/article/abs/pii/S0378375801001252 [15] Spectral Analysis for Harmonizable Processes - jstor https://www.jstor.org/stable/2700011 [16] [PDF] SOME PROPERTIES OF HARMONIZABLE PROCESSES - Marc ... https://cirrus18.com/articles/prop.pdf [17] On a class of asymptotically stationary harmonizable processes https://www.sciencedirect.com/science/article/pii/0047259X87900893 [18] [PDF] Harmonizable, Cramer, and Karhunen Classes of Processes. - DTIC https://apps.dtic.mil/sti/tr/pdf/ADA144984.pdf [19] [PDF] Harmonizable Processes - DTIC https://apps.dtic.mil/sti/tr/pdf/ADA093302.pdf [20] Harmonic measure in the presence of a spectral gap - Project Euclid https://projecteuclid.org/journals/annales-de-linstitut-henri-poincare-probabilites-et-statistiques/volume-52/issue-3/Harmonic-measure-in-the-presence-of-a-spectral-gap/10.1214/15-AIHP670.pdf [21] A First Course in Spectral Theory - American Mathematical Society https://www.ams.org/books/gsm/226/gsm226-endmatter.pdf [22] [PDF] Bimeasures and Sampling Theorems for Weakly Harmonizable ... https://apps.dtic.mil/sti/tr/pdf/ADA120937.pdf [23] [PDF] Spectral theory in Hilbert spaces (ETH Zürich, FS 09) E. Kowalski https://people.math.ethz.ch/~kowalski/spectral-theory.pdf [24] [PDF] Preliminaries In the following work, let (Ω,Σ,P) be the underl - EMIS https://www.emis.de/journals/PM/57f1/pm57f105.pdf [25] Measure (mathematics) - Wikipedia https://en.wikipedia.org/wiki/Measure_(mathematics) [26] [PDF] Characterizations of harmonizable fields - Sci-Hub https://dacemirror.sci-hub.se/journal-article/e42b0f933bae2cfda4d539a9989aa8f9/rao2005.pdf [27] [PDF] A GUIDE TO SPECTRAL THEORY https://perso.univ-rennes1.fr/christophe.cheverry/spectral-theory.pdf [28] Advances on Theoretical and Methodological Aspects of Probability ... https://api-uat.taylorfrancis.com/content/chapters/edit/download?identifierName=doi&identifierValue=10.1201%2F9780203493205-2&type=chapterpdf [29] Time-frequency characterization of harmonizable random processes https://munin.uit.no/handle/10037/5925 [30] [PDF] On a Class of Asymptotically Stationary Harmonizable Processes https://core.ac.uk/download/pdf/82720645.pdf

⚠️ **GitHub.com Fallback** ⚠️