OrthogonalPoynomials - crowlogic/arb4j GitHub Wiki

Polynomial Family Weight Function W(x) Interval
Hermite $$e^{-x^2}$$ (-∞, ∞)
Laguerre $$x^{\alpha}e^{-x}$$ [0, ∞)
Jacobi $$(1-x)^{\alpha}(1+x)^{\beta}$$ [-1, 1]
Chebyshev (1st kind) $$\frac{1}{\sqrt{1-x^2}}$$ [-1, 1]
Chebyshev (2nd kind) $$\sqrt{1-x^2}$$ [-1, 1]
Legendre 1 [-1, 1]
Gegenbauer $$(1-x^2)^{\alpha-\frac{1}{2}}$$ [-1, 1]

These polynomials satisfy the orthogonality relation:

$$\int P_m(x)P_n(x)W(x)dx = 0, \quad m \neq n $$

where the integral ranges over the given interval.