OrthogonalPoynomials - crowlogic/arb4j GitHub Wiki
| Polynomial Family | Weight Function W(x) | Interval | 
|---|---|---|
| Hermite | $$e^{-x^2}$$ | (-∞, ∞) | 
| Laguerre | $$x^{\alpha}e^{-x}$$ | [0, ∞) | 
| Jacobi | $$(1-x)^{\alpha}(1+x)^{\beta}$$ | [-1, 1] | 
| Chebyshev (1st kind) | $$\frac{1}{\sqrt{1-x^2}}$$ | [-1, 1] | 
| Chebyshev (2nd kind) | $$\sqrt{1-x^2}$$ | [-1, 1] | 
| Legendre | 1 | [-1, 1] | 
| Gegenbauer | $$(1-x^2)^{\alpha-\frac{1}{2}}$$ | [-1, 1] | 
These polynomials satisfy the orthogonality relation:
$$\int P_m(x)P_n(x)W(x)dx = 0, \quad m \neq n $$
where the integral ranges over the given interval.