75. Sort Colors - cocoder39/coco39_LC GitHub Wiki
Notes 2020: Option 1: quick sort
class Solution:
def sortColors(self, nums: List[int]) -> None:
"""
Do not return anything, modify nums in-place instead.
"""
n = len(nums)
i, p0, p2 = 0, 0, n-1
while i <= p2:
if nums[i] == 0:
nums[i], nums[p0] = nums[p0], nums[i]
p0 += 1
i += 1
elif nums[i] == 2:
nums[i], nums[p2] = nums[p2], nums[i]
p2 -= 1
else:
i += 1
Option 2: bucket sort
===============================================================
[lt, gt] are 1, left side are 0, right side are 2, the trick is when should we use i++
. i records currently visited number, which should be faster than lt
. i >= lt
-
nums[i++] < nums[lt++]
, here we have to use i++, because the new nums[i] (previous nums[lt]) should have been visited by i
O(n) time and O(1) space
void sortColors(vector<int>& nums) {
int sz = nums.size();
int i = 0, lt = 0, gt = sz - 1;
while (i <= gt) {
if (nums[i] == 0) {
swap(nums[lt++], nums[i++]); //nums[lt] is guaranteed to be visited by i => i++
} else if (nums[i] == 2) {
swap(nums[gt--], nums[i]); //nums[gt] has not been visited by i => not i++
} else {
i++;
}
}
}
bucket sort works as well
void sortColors(vector<int>& nums) {
vector<int> counter(3);
for (auto num : nums) {
counter[num]++;
}
int idx = 0;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < counter[i]; j++) {
nums[idx++] = i;
}
}
}
second round attention:
- condition of while depends on initial value of r and b, wrong condition would result in dead loop
b = sz => black is [b, sz) => do need care case when w == b => while (w < b), while(w <= b) leads to dead loop
b = sz - 1 => black is (b, sz) => need care case when w == b => while (w <= b), while(w < b) ignores nums[b]
- when to increase w
when nums[w] == 1, increase
when nums[w] == 0, increase after swapping, because the new element at index w is either 0 (no swapping) or 1 (a previously processed element)
when nums[w] == 2, do not increase after swapping, because the new element at index w has not been visited before
void sortColors(vector<int>& nums) {
int sz = nums.size();
int r = 0, w = 0, b = sz - 1;
//[0, r) is red, [r, w) is white, (b, sz-1] is black
while (w <= b) {
if (nums[w] == 0) {
swap(nums[r++], nums[w++]);
} else if (nums[w] == 2) {
swap(nums[b--], nums[w]);
} else {
w++;
}
}
}
void sortColors(vector<int>& nums) {
int sz = nums.size();
int r = -1, w = 0, b = sz;
//[0, r] is red, (r, w) is white, [b, sz-1] is black
while (w < b) {
if (nums[w] == 0) {
swap(nums[++r], nums[w++]);
} else if (nums[w] == 2) {
swap(nums[--b], nums[w]);
} else {
w++;
}
}
}
follow up:
Given an array of n objects with k different colors (numbered from 1 to k), sort them so that objects of the same color are adjacent, with the colors in the order 1, 2, ... k.
Given colors=[3, 2, 2, 1, 4], k=4, your code should sort colors in-place to [1, 2, 2, 3, 4].
void sortColors2(vector<int> &colors, int k) {
// write your code here
int low = 1, high = k;
// (-1, left] [right, colors.size())
int left = -1, mid = 0, right = colors.size();
while (low < high) {
while (mid < right) {
if (colors[mid] == low) {
swap(colors[mid++], colors[++left]);
} else if (colors[mid] == high) {
swap(colors[mid], colors[--right]);
} else {
mid++;
}
}
mid = left + 1;
low++;
high--;
}
}
actually a bad implementation of quick sort, of which time complexity is O(n ^ 2)
class Solution{
public:
/**
* @param colors: A list of integer
* @param k: An integer
* @return: nothing
*/
void sortColors2(vector<int> &colors, int k) {
// write your code here
shuffle(colors);
int sz = colors.size();
quickSort(colors, 0, sz - 1);
}
private:
void shuffle(vector<int>& colors) {
int sz = colors.size();
for (int i = sz - 1; i > 0; i--) {
int j = random() % (i + 1);
swap(colors[i], colors[j]);
}
}
int partition(vector<int>& colors, int start, int end) {
for (int i = start; i < end; i++) {
if (colors[i] < colors[end]) {
swap(colors[start++], colors[i]);
}
}
swap(colors[start], colors[end]);
return start;
}
void quickSort(vector<int>& colors, int start, int end) {
if (start >= end) return;
int p = partition(colors, start, end);
quickSort(colors, start, p - 1);
quickSort(colors, p + 1, end);
}
};