A32 Multiset Bar Chart - cimat/data-visualization-patterns GitHub Wiki
#A 3.1: MULTISET BAR CHART
The diagram let the user inspect and compare several sets of quantitative data while occupying significantly less display space than a set of multiple conventional bar charts (Behrens, 2008).
Use a multiset bar chart to display various datasets of quantitative data items within one diagram. Note that you can use several independent datasets, but that you have to make sure that each set contains the same nominal class of discrete items (Behrens, 2008).
Create a Cartesian coordinate system. Identify those data items from different sets that belong to the same entity. Separate the x-axis into regular segments, and attach to each of these segments one of the data entities you want to display. For each data item belonging to a specific group, attach a vertical rectangle above the corresponding label on the x-axis and adjust its height according to the data value it represents. Visually separate the entity groups from each other and bundle their bars (Behrens, 2008).
Multiset bar charts allow the user to compare the magnitude of data items by two separate discrete parameters. It is often used to subdivide discrete entities for further and more detailed exploration, like for instance the months in an un- employment chart that are divided into male and female figures (Behrens, 2008).
- A 3.1 Simple Bar Chart
- A 3.3 Dot Matrix
- A 3.5 Isometric Bar Chart
from datos import data
d=data('mtcars')
d.head()
- Matplotlib
- Seaborn
- Pyqtgraph
- Pandas
import numpy as np
import matplotlib.pyplot as plt
from datos import data
import pandas
d=data('mtcars')
t1 = d.pivot_table( values = 'carb',index=['cyl'], columns = ['gear'],
aggfunc = len)
bar_width = 0.15
opacity = 0.4
rects1 = plt.bar(t1.columns, t1.values[0], bar_width,
alpha=opacity,color='g')
rects2 = plt.bar(t1.columns + bar_width, t1.values[1], bar_width,
alpha=opacity, color='r')
rects3 = plt.bar(t1.columns +2* bar_width, t1.values[2], bar_width,
alpha=opacity, color='y')
plt.xlabel('Number of Gears')
plt.ylabel('Frequency')
plt.title('Car Distribution by Gear and Cylindres')
plt.legend(t1.index, title='Cylindres')
plt.show()
{width=12 cm}
import seaborn as sns
import matplotlib.pyplot as plt
from datos import data
import pandas
sns.set(style="whitegrid")
d=data('mtcars')
g = sns.factorplot("gear",hue="cyl", data=d,size=6, kind="count")
g.set_axis_labels( "Number of Gears", "Frequency")
plt.title('Car Distribution by Gear and Cylindres', family='Serif',
size=16)
plt.show()
{width=12 cm}
from pyqtgraph.Qt import QtCore, QtGui
import pyqtgraph as pg
import numpy as np
from datos import data
import pandas
d=data('mtcars')
t1 = d.pivot_table( values = 'carb',index=['cyl'], columns = ['gear'],
aggfunc = len)
bar_width = 0.25
win = pg.plot(title='Simple Bar Chart')
bg1 = pg.BarGraphItem(x=t1.columns, height=t1.values[0],
width=bar_width, brush='g')
bg2 = pg.BarGraphItem(x=t1.columns+bar_width, height=t1.values[1],
width=bar_width, brush='r')
bg3 = pg.BarGraphItem(x=t1.columns+2*bar_width, height=t1.values[2],
width=bar_width, brush='y')
win.addItem(bg1)
win.addItem(bg2)
win.addItem(bg3)
win.setTitle('Car Distribution by Gear and Cylindres ')
win.setLabel('left', "Frequency", )
win.setLabel('bottom', "Number of Gears")
if __name__ == '__main__':
import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore,
'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()
{width=12 cm}
counts <- table(mtcars$cyl, mtcars$gear)
counts
##
## 3 4 5
## 4 1 8 2
## 6 2 4 1
## 8 12 0 2
- lattice
- ggplot2
counts <- table(mtcars$cyl, mtcars$gear)
barplot(counts, main="Car Distribution by Gears and Cyl",
xlab="Number of Gears", ylab="Frequency", col=c("darkblue","red"),
legend = rownames(counts), beside=TRUE)
library("lattice")
counts <- table(mtcars$gear, mtcars$cyl)
barchart(counts, stack = FALSE, horizontal="false", main="Car Distribution by Gears and Cyl", xlab="Number of Gears", ylab="Frequency",
auto.key = list(space="top", columns=3, title="Cyl", cex.title=1))
library("ggplot2")
## Warning: package 'ggplot2' was built under R version 3.2.2
g <- ggplot(mtcars, aes(factor(gear), fill=factor(cyl))) + geom_bar( position = "dodge")
g + labs(list(title = "Car Distribution by Gears and Cyl", x="Number of Gears", y="Frequency"))