computer - chunhualiao/public-docs GitHub Wiki
what is the best computer hardware configuration to run deekseek-R1 full model? why?
The DeepSeek-R1 671B parameter model demands high-end enterprise-grade hardware due to its massive computational and memory requirements. Here's the optimal configuration and rationale:
Core Hardware Requirements
-
GPUs:
- Minimum: 20× NVIDIA RTX 3090 (24 GB VRAM each) or 10× NVIDIA RTX A6000 (48 GB VRAM each) to meet the 480 GB VRAM requirement[1][4].
- Multi-GPU configurations are mandatory, as no single consumer GPU provides sufficient VRAM.
-
RAM:
- 768 GB DDR5 across 24 channels (24×32 GB modules) to ensure 800+ GB/s memory bandwidth[2][7].
- DDR5-4800+ recommended for optimal throughput.
-
CPU:
- Dual AMD EPYC 9004-series CPUs (e.g., 96-core 9654) to handle parallelized model layers and avoid bottlenecks[2][7].
-
Storage:
- NVMe SSD (≥1 TB) for fast loading of the 700+ GB model weights[2].
Supporting Components
-
Motherboard:
- Server-grade board with SP5 sockets (e.g., ASUS WRX90) to support dual EPYC CPUs and PCIe 5.0 x16 slots for GPUs[2][7].
-
Power Supply:
- 1600W+ PSU with multiple 12VHPWR connectors (e.g., Corsair AX1600i) to sustain GPU power draw[2].
-
Cooling:
- Custom loop liquid cooling or high-static-pressure server fans to manage heat from 10–20 GPUs[1][7].
Performance Optimization
- NUMA Configuration: Disable NUMA in BIOS to enable memory interleaving across all RAM modules, doubling throughput[2].
- Software: Use
llama.cpp
or optimized forks for CPU/GPU workload distribution[2][5].
Cost Estimate
- GPUs: ~$30,000 (10× RTX A6000)
- CPUs/RAM/Motherboard: ~$15,000
- Total: ~$50,000+ (enterprise/research-tier investment)[7].
Why This Configuration?
- VRAM Scale: The 671B model’s 480 GB parameter size exceeds consumer hardware limits, necessitating multi-GPU setups[1][4].
- Memory Bandwidth: 24-channel DDR5 ensures rapid data transfer to feed the model’s layers[2][7].
- Enterprise Readiness: Server-grade components provide reliability for sustained inference workloads[1][7].
Smaller models (e.g., 7B–70B) can run on consumer GPUs like RTX 3090s, but the full 671B model requires specialized infrastructure[1][4][7].
Citations:
- [1] https://www.geeky-gadgets.com/hardware-requirements-for-deepseek-r1-ai-models/
- [2] https://news.ycombinator.com/item?id=42865575
- [3] https://www.youtube.com/watch?v=wMiQAjUOpK4
- [4] https://www.youtube.com/watch?v=15sP_ovz-Cw
- [5] https://huggingface.co/deepseek-ai/DeepSeek-R1/discussions/19
- [6] https://stackoverflow.com/questions/79407023/hardware-requirements-for-running-the-full-size-deepseek-r1-with-springboot
- [7] https://forum.level1techs.com/t/deepseek-r1-671b-backed-by-fast-read-iops/225008
- [8] https://www.reddit.com/r/ollama/comments/1icv7wv/hardware_requirements_for_running_the_full_size/
- [9] https://snowkylin.github.io/blogs/a-note-on-deepseek-r1.html
- [10] https://www.instagram.com/arpancodes/reel/DFaN3rUzpUp/
- [11] https://www.reddit.com/r/ollama/comments/1ifa93h/deepseek_r1_hardware_requirements_explained/
- [12] https://blog.adyog.com/2025/01/29/deploying-deepseek-r1-locally-complete-technical-guide-2025/
- [13] https://www.reddit.com/r/LocalLLaMA/comments/1ighj1n/what_hardware_needed_to_run_deepseek_r1_671b/
- [14] https://nodeshift.com/blog/a-step-by-step-guide-to-install-deepseek-r1-locally-with-ollama-vllm-or-transformers-2
- [15] https://www.youtube.com/watch?v=wMiQAjUOpK4
- [16] https://www.youtube.com/watch?v=5RhPZgDoglE
- [17] https://www.oneclickitsolution.com/centerofexcellence/aiml/deepseek-models-minimum-system-requirements
- [18] https://rasim.pro/blog/how-to-install-deepseek-r1-locally-full-6k-hardware-software-guide/
- [19] https://vagon.io/blog/a-step-by-step-guide-to-running-deepseek-r1-on-vagon-cloud-desktops
- [20] https://news.ycombinator.com/item?id=42865575