zzz_Trace_2025_10_26_10_45_37.md - chaosregular/MorphogenicSimulator GitHub Wiki

(chat: https://chatgpt.com/c/68cc65e6-58f4-8331-a5a3-be1862f48bd0) link for reference only for now - may be unaccesible

chaosregular(x)2025-10-26_10:45:37:

Thank you Trace!

Changes you suggested applied. I have attached initial output from: https://github.com/chaosregular/URGE/blob/main/experiments/toys/universe_osc1_batch_04.c

Grok offered to make some analysis if will get it as csv format file. Would you like to convert it to such format?

Also update since our last exchange:
https://github.com/chaosregular/MorphogenicSimulator/wiki/zzz_Seek_2025_10_25_20_30_CEST.md

Your opinion on provided output? (those 'far away particles' are effect of not-best-chosen initial time step and 'random initial spatial distribution')

Also, any next steps you see as progress are welcome.

best,
chaosregular(x)2025-10-26_10:45:37

_attached universe_osc1_batch_04_--batch_498_501_10000.txt

Trace reply

Here’s the CSV version of your uploaded simulation output, ready for Grok’s analysis:

📄 Download universe_osc1_batch_04_converted.csv

It contains each numerical series from the text file parsed into separate columns (r_0, r_1, etc.).

Would you like me to also include headers with metadata (batch, timestep, parameters) or leave it as raw numeric data for now?

import pandas as pd
import re

# Load file
file_path = "/mnt/data/universe_osc1_batch_04_--batch_498_501_10000.txt"
with open(file_path, "r") as f:
    text = f.read()

# Extract arrays of numbers with regex
matches = re.findall(r"NS\(\d+/\d+\)\s+r=\d+:\s+\[([^\]]+)\]", text)

# Convert to dataframe structure
data = {}
for i, match in enumerate(matches):
    numbers = [float(x.strip()) for x in match.split(",") if x.strip()]
    data[f"r_{i}"] = numbers

df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in data.items()]))

# Save to CSV
csv_path = "/mnt/data/universe_osc1_batch_04_converted.csv"
df.to_csv(csv_path, index=False)

csv_path

chaosregular(x)2025-10-26_10:52:35

Thank you Trace, please provide headers. One detail - you have listed r_0 ..r_37, while there is 498 particles, something does not add up. Or it is me in not fully operational state?(kinda morning)

best,
chaosregular(x)2025-10-26_10:52:35

Trace reply 2025-10-26_10:52:35

Thinking

Addressing parsing issue

I need to explain the parsing issue, where the regex match was too limited. The file likely contains more complex data structure, which the regex didn’t capture fully. I’ll inspect the file using a tool to identify the correct pattern and make the adjustments to match the expected 498 particles. Inspecting file content for proper parsing

Let's inspect the file content to understand structure.

path = "/mnt/data/universe_osc1_batch_04_--batch_498_501_10000.txt" with open(path, "r") as f: lines = f.readlines() len(lines), lines[:40]

, 0.6227006, 0.6229046, 0.6229046, 0.6237215, 0.6237215, 0.6251265, 0.6252315, 0.6264465, 0.6264465, 0.6270287, 0.6277069, 0.6278901, 0.6279222, 0.6279222, 0.6281603, 0.6281603, 0.6288105, 0.6288105, 0.6300283, 0.6300283, 0.6300632, 0.6306390, 0.6306788, 0.6315691, 0.6315691, 0.6317017, 0.6323060, 0.6323803, 0.6325184, 0.6328343, 0.6334727, 0.6334727, 0.6337462, 0.6345529, 0.6346474, 0.6349786, 0.6351511, 0.6357616, 0.6357616, 0.6366490, 0.6368463, 0.6372864, 0.6372864, 0.6385270, 0.6385270, 0.6388513, 0.6391144, 0.6391144, 0.6400381, 0.6400453, 0.6421883, 0.6429817, 0.6442798, 0.6444516, 0.6444516, 0.6447094, 0.6447094, 0.6447186, 0.6447200, 0.6447200, 0.6453483, 0.6455292, 0.6455591, 0.6458903, 0.6458903, 0.6459739, 0.6464738, 0.6475113, 0.6476377, 0.6479732, 0.6480477, 0.6485511, 0.6501039, 0.6501039, 0.6501993, 0.6501993, 0.6508761, 0.6508761, 0.6510951, 0.6514979, 0.6516810, 0.6520716, 0.6520716, 0.6534969, 0.6539501, 0.6555465, 0.6555634, 0.6582293, 0.6593988, 0.6596861, 0.6606022, 0.6628793, 0.6638207, 0.6640475, 0.6645325, 0.6651990, 0.6653958, 0.6656257, 0.6657509, 0.6678979, 0.6692186, 0.6706902, 0.6708633, 0.6708633, 0.6713024, 0.6719993, 0.6721494, 0.6741116, 0.6764939, 0.6767763, 0.6777570, 0.6777570, 0.6784543, 0.6869207, 0.6882066, 0.6898977, 0.6905142, 0.6910552, 0.6910552, 0.6923285, 0.6938574, 0.6948931, 0.6965892, 0.6975191, 0.6999679, 0.7000778, 0.7000778, 0.7038184, 0.7048498, 0.7063076, 0.7073256, 0.7074722, 0.7113065, 0.7129496, 0.7129496, 0.7137934, 0.7180468, 0.7180468, 0.7181585, 0.7220441, 0.7244107, 0.7246992, 0.7251226, 0.7256637, 0.7257307, 0.7261820, 0.7261820, 0.7309693, 0.7333008, 0.7333008, 0.7441019, 0.7441019, 0.7456640, 0.7456640, 0.7480004, 0.7540296, 0.7657177, 0.7657177, 0.7670925, 0.7682725, 0.7682725, 0.7829463, 0.7876708, 0.7876708, 0.7892011, 0.7943061, 0.7950897, 0.8228947, 0.8233894, 0.8755292, 0.8863176, 0.8863176, 0.9109007, 0.9109007, 0.9266555, 0.9266555, 0.9746428, 0.9746428, 1.0039485, 1.0060641, 1.0198705, 1.0406785, 1.0584962, 1.0584962, 1.0712460, 1.0800937, 1.0859985, 1.0910870, 1.0910870, 1.2342953, 1.2733913, 1.2803210, 1.2986708, 1.3175290, 1.3218104, 1.4213767, 1.4379515, 1.4967826, 1.5149187, 1.5357639, 1.6740128, 1.7030255, 1.7125739, 1.7309564, 1.7421797, 1.7556653, 1.7770460, 1.7844386, 1.8043966, 1.8043966, 1.8086297, 1.8183127, 1.8183127, 1.8251815, 1.8251815, 1.8272672, 1.8285042, 1.8344889, 1.8360852, 1.8389200, 1.8405539, 1.8511489, 1.8517836, 1.8547821, 1.8561781, 1.8566556, 1.8621107, 1.8627754, 1.8657015, 1.8666543, 1.8810171, 1.8889430, 1.9062542, 1.9239830, 1.9239830, 1.9470839, 1.9505028, 2.0323451, 2.0520246, 2.0625536, 2.0646376, 2.0646376, 2.0805890, 2.0805890, 2.0926924, 2.1579487, 2.1579487, 2.1598460, 2.7940164, 2.8008848, 2.8952469, 2.8952469, 2.8978920, 2.8978920, 2.9297602, 3.0093621, 3.0093621, 3.0182090, 3.0944084, 3.5857980, 3.6799116, 4.1438684, 4.2425861, 4.2425861, 4.6111562, 4.6549740, 4.6742248, 5.1419513, 5.4670792, 5.4670792, 6.1758046, 6.2060305, 6.2060305, 6.9981962, 7.1948160, 7.3030799, 7.6190446, 8.0268826, 8.0720959, 8.0720959, 8.5422873, 8.5441245, 8.5441245, 8.7757737, 9.1419165, 9.1489318, 9.9168573, 11.7348241, 13.5130366, 13.6785996, 16.9653185, 20.5353779, 21.2180879, 22.4804653, 23.8565444, 23.8565444, 26.0720044, 26.0720044, 28.0524247, 28.2380912, 30.7153681, 32.8618553, 43.1605533, 47.4854384, 150.8307446, 153.8133593, 156.0380212, 158.0206998]\n', 'NS(498/371) r=12: [0.5288564, 0.5288564, 0.5313714, 0.5313714, 0.5468173, 0.5468173, 0.5539749, 0.5539749, 0.5540175, 0.5540175, 0.5594197, 0.5594197, 0.5598204, 0.5598204, 0.5625822, 0.5625822, 0.5638979, 0.5645533, 0.5659586, 0.5668403, 0.5668403, 0.5674006, 0.5674006, 0.5677882, 0.5677882, 0.5755883, 0.5755883, 0.5775440, 0.5775440, 0.5785580, 0.5785580, 0.5788599, 0.5803518, 0.5803518, 0.5803972, 0.5803972, 0.5804716, 0.5804716, 0.5808137, 0.5808137, 0.5846759, 0.5846759, 0.5848841, 0.5848841, 0.5850927, 0.5867168, 0.5867168, 0.5872182, 0.5872182, 0.5880469, 0.5904504, 0.5904504, 0.5908196, 0.5908196, 0.5920792, 0.5921655, 0.5921655, 0.5921863, 0.5921863, 0.5945918, 0.5945918, 0.5947270, 0.5947270, 0.5950577, 0.5950577, 0.5960659, 0.5961883, 0.5961883, 0.5963996, 0.5963996, 0.5970243, 0.5970243, 0.5972730, 0.5976420, 0.5976420, 0.5977680, 0.5986791, 0.5986791, 0.5998653, 0.5998653, 0.6003659, 0.6003659, 0.6007229, 0.6013091, 0.6013091, 0.6017193, 0.6017193, 0.6018323, 0.6018323, 0.6023807, 0.6030772, 0.6030772, 0.6034968, 0.6034968, 0.6059534, 0.6059534, 0.6069634, 0.6073888, 0.6074579, 0.6074579, 0.6076098, 0.6076098, 0.6077811, 0.6079522, 0.6079522, 0.6080761, 0.6080761, 0.6085761, 0.6086845, 0.6086845, 0.6087588, 0.6089129, 0.6096488, 0.6096488, 0.6101382, 0.6101382, 0.6103361, 0.6103361, 0.6104126, 0.6104126, 0.6110220, 0.6114218, 0.6114218, 0.6116224, 0.6134462, 0.6134462, 0.6134503, 0.6134503, 0.6141580, 0.6141580, 0.6142078, 0.6145130, 0.6145130, 0.6149224, 0.6150756, 0.6150756, 0.6157481, 0.6157481, 0.6162913, 0.6164909, 0.6166921, 0.6177891, 0.6177891, 0.6183834, 0.6190379, 0.6194783, 0.6195774, 0.6198140, 0.6199935, 0.6199935, 0.6206212, 0.6206272, 0.6206272, 0.6213752, 0.6225663, 0.6225663, 0.6226543, 0.6226543, 0.6255756, 0.6255833, 0.6255833, 0.6259898, 0.6263303, 0.6263303, 0.6263797, 0.6263797, 0.6266473, 0.6271280, 0.6272883, 0.6274969, 0.6274969, 0.6276091, 0.6276207, 0.6284110, 0.6284137, 0.6284598, 0.6287085, 0.6296559, 0.6296559, 0.6299026, 0.6299026, 0.6299233, 0.6307521, 0.6308955, 0.6309639, 0.6309639, 0.6309739, 0.6316605, 0.6320023, 0.6325188, 0.6333339, 0.6333445, 0.6333445, 0.6340856, 0.6340856, 0.6341078, 0.6343776, 0.6352151, 0.6356497, 0.6356497, 0.6360427, 0.6361775, 0.6368974, 0.6368974, 0.6374810, 0.6374892, 0.6375669, 0.6376475, 0.6376475, 0.6386957, 0.6387527, 0.6394361, 0.6397557, 0.6411882, 0.6419884, 0.6419884, 0.6420153, 0.6420153, 0.6420676, 0.6420857, 0.6420857, 0.6425575, 0.6425575, 0.6427486, 0.6430568, 0.6430936, 0.6431345, 0.6431345, 0.6432651, 0.6436760, 0.6436760, 0.6444631, 0.6444631, 0.6449520, 0.6463107, 0.6463240, 0.6463943, 0.6468919, 0.6485942, 0.6486765, 0.6486765, 0.6492811, 0.6497758, 0.6498618, 0.6516517, 0.6516727, 0.6516727, 0.6521654, 0.6533905, 0.6533905, 0.6535788, 0.6539612, 0.6539612, 0.6544548, 0.6544548, 0.6555574, 0.6555574, 0.6563821, 0.6565090, 0.6568596, 0.6570418, 0.6572065, 0.6573729, 0.6575228, 0.6580898, 0.6581278, 0.6581831, 0.6582380, 0.6585277, 0.6585277, 0.6585792, 0.6590833, 0.6591874, 0.6596373, 0.6603435, 0.6603435, 0.6604483, 0.6614551, 0.6625772, 0.6638019, 0.6638019, 0.6641023, 0.6643745, 0.6677026, 0.6687818, 0.6693109, 0.6693109, 0.6695521, 0.6705303, 0.6708780, 0.6708780, 0.6712781, 0.6715412, 0.6724417, 0.6740458, 0.6740458, 0.6746478, 0.6756942, 0.6762054, 0.6770711, 0.6772384, 0.6772384, 0.6805951, 0.6805951, 0.6813506, 0.6826049, 0.6837346, 0.6837346, 0.6848821, 0.6853789, 0.6853789, 0.6853924, 0.6887171, 0.6888533, 0.6891600, 0.6893594, 0.6906049, 0.6906049, 0.6915789, 0.6937489, 0.6955936, 0.6960032, 0.6967253, 0.6970248, 0.6978070, 0.6979415, 0.6995291, 0.6995810, 0.7012808, 0.7047001, 0.7064517, 0.7070828, 0.7084919, 0.7094362, 0.7107034, 0.7107034, 0.7107431, 0.7112850, 0.7153780, 0.7178278, 0.7245714, 0.7245714, 0.7252581, 0.7262025, 0.7295314, 0.7307327, 0.7308138, 0.7451990, 0.7519676, 0.7549726, 0.7576887, 0.7720931, 0.7720931, 0.7951489, 0.7972703, 0.8013493, 0.8095162, 0.8203107, 0.8321714, 0.8472326, 0.8519886, 0.8661261, 0.8800076, 0.9113881, 0.9113881, 0.9487328, 0.9824168, 1.0431628, 1.0539655, 1.0578963, 1.0983241, 1.1102688, 1.1102688, 1.1128988, 1.1553812, 1.1688627, 1.1699252, 1.1976251, 1.2427445, 1.2512459, 1.2778353, 1.3064758, 1.3238759, 1.4201410, 1.4772754, 1.5584144, 1.6066793, 1.6066793, 1.6833219, 1.6960716, 1.7070640, 1.7213416, 1.7213416, 1.7507007, 1.7524179, 1.7776096, 1.7807225, 1.7835031, 1.7862545, 1.7977744, 1.8165583, 1.8302760, 1.8536876, 1.8555025, 1.8555025, 1.8600725, 1.8805469, 1.8870220, 1.8870220, 1.9038623, 1.9053439, 1.9053439, 1.9165000, 1.9244086, 1.9244086, 1.9524860, 2.0322689, 2.0512742, 2.1265716, 2.1265716, 2.1414131, 2.8402053, 2.8402053, 2.8504024, 2.8785904, 2.8785904, 2.8786736, 2.9385909, 3.0151026, 3.0151026, 3.0323795, 3.0849015, 3.0948243, 3.5639839, 3.5639839, 3.5895607, 3.5895607, 3.6826627, 3.7127365, 3.7127365, 3.7281142, 3.7281142, 4.1092603, 4.1092603, 4.1095577, 4.1515059, 4.1515059, 4.1785684, 4.1925975, 4.6678262, 4.7086682, 4.7086682, 4.7168661, 5.0566529, 5.1334836, 5.1482997, 5.1482997, 5.2667398, 5.4597569, 5.5326624, 5.5326624, 5.7967828, 5.8220443, 5.8900588, 6.1460007, 6.1460007, 6.2028703, 6.2199552, 6.2207597, 6.7574672, 7.0526295, 7.0989251, 7.3260825, 7.3595264, 7.3595264, 7.8315452, 7.8699074, 8.3373775, 8.7249229, 8.7425672, 8.9605152, 10.6461441, 12.5588079, 16.2717773, 27.7706607, 31.1743302, 60.4831289, 66.6921748, 67.6644488, 67.6644488, 70.0138823, 70.0138823, 249.4361313, 251.2170809, 260.1824216, 263.4457698, 270.5262504, 272.1437713]\n', 'NS(498/379) r=13: [0.5464373, 0.5464373, 0.5467313, 0.5467313, 0.5505529, 0.5505529, 0.5553308, 0.5553308, 0.5575756, 0.5575756, 0.5577254, 0.5577254, 0.5578139, 0.5578139, 0.5595171, 0.5595171, 0.5596639, 0.5596639, 0.5612926, 0.5612926, 0.5655128, 0.5655128, 0.5658203, 0.5679901, 0.5679901, 0.5688384, 0.5688384, 0.5709450, 0.5714401, 0.5714401, 0.5724853, 0.5724853, 0.5730718, 0.5730718, 0.5754643, 0.5754643, 0.5755833, 0.5755833, 0.5765896, 0.5765896, 0.5768269, 0.5768269, 0.5774047, 0.5775642, 0.5796304, 0.5796304, 0.5811642, 0.5815422, 0.5815422, 0.5820786, 0.5820786, 0.5822029, 0.5836355, 0.5836355, 0.5842395, 0.5842395, 0.5843438, 0.5846074, 0.5846074, 0.5851643, 0.5853259, 0.5854616, 0.5869739, 0.5869739, 0.5880987, 0.5911309, 0.5911309, 0.5921129, 0.5921129, 0.5935518, 0.5937969, 0.5941281, 0.5941281, 0.5945757, 0.5945757, 0.5954179, 0.5960057, 0.5960057, 0.5961471, 0.5966266, 0.5968759, 0.5969782, 0.5969782, 0.5973899, 0.5973899, 0.5976232, 0.5976232, 0.5983701, 0.5983701, 0.5985354, 0.5985354, 0.5986068, 0.5986068, 0.5986971, 0.5990005, 0.5994400, 0.5994400, 0.6006916, 0.6006916, 0.6008799, 0.6008799, 0.6009735, 0.6009735, 0.6016319, 0.6021180, 0.6021180, 0.6028967, 0.6028967, 0.6037994, 0.6037994, 0.6041605, 0.6052637, 0.6052637, 0.6056671, 0.6056857, 0.6058856, 0.6058856, 0.6061340, 0.6061340, 0.6061933, 0.6061933, 0.6068630, 0.6068817, 0.6068854, 0.6081770, 0.6084283, 0.6088207, 0.6093597, 0.6100428, 0.6102017, 0.6104677, 0.6104677, 0.6105454, 0.6107425, 0.6107537, 0.6107537, 0.6109931, 0.6109931, 0.6111661, 0.6114003, 0.6120154, 0.6120154, 0.6121004, 0.6125112, 0.6134049, 0.6134192, 0.6134192, 0.6135666, 0.6135666, 0.6142155, 0.6142155, 0.6142309, 0.6142309, 0.6147891, 0.6148145, 0.6153675, 0.6153675, 0.6154298, 0.6162500, 0.6162979, 0.6162979, 0.6165035, 0.6170772, 0.6170772, 0.6194386, 0.6197417, 0.6201208, 0.6213947, 0.6213947, 0.6216864, 0.6219181, 0.6221979, 0.6222803, 0.6233530, 0.6235107, 0.6235107, 0.6236813, 0.6239709, 0.6239709, 0.6243872, 0.6243872, 0.6244040, 0.6249907, 0.6249907, 0.6253139, 0.6253291, 0.6253291, 0.6260636, 0.6260636, 0.6263212, 0.6264273, 0.6272554, 0.6273938, 0.6285458, 0.6285458, 0.6286159, 0.6294344, 0.6300306, 0.6311833, 0.6313758, 0.6316840, 0.6325237, 0.6325237, 0.6329926, 0.6329926, 0.6331376, 0.6332029, 0.6332029, 0.6341159, 0.6341198, 0.6347441, 0.6347441, 0.6354049, 0.6358443, 0.6361902, 0.6365059, 0.6365059, 0.6365505, 0.6376300, 0.6376610, 0.6379314, 0.6379314, 0.6382410, 0.6391554, 0.6392926, 0.6398408, 0.6398784, 0.6399446, 0.6399446, 0.6402006, 0.6402006, 0.6409661, 0.6409661, 0.6410643, 0.6410643, 0.6412902, 0.6418647, 0.6419177, 0.6428404, 0.6429366, 0.6429576, 0.6432695, 0.6432695, 0.6441252, 0.6445521, 0.6445521, 0.6446292, 0.6449067, 0.6460572, 0.6462081, 0.6462081, 0.6462418, 0.6462418, 0.6466371, 0.6467999, 0.6477581, 0.6478143, 0.6493436, 0.6495333, 0.6504590, 0.6518563, 0.6518563, 0.6528332, 0.6544994, 0.6546215, 0.6550684, 0.6550684, 0.6560350, 0.6566409, 0.6573908, 0.6573908, 0.6573949, 0.6574655, 0.6576493, 0.6577836, 0.6586988, 0.6589665, 0.6589738, 0.6589738, 0.6592369, 0.6600087, 0.6617673, 0.6617950, 0.6619118, 0.6621766, 0.6621809, 0.6624782, 0.6634169, 0.6634169, 0.6651687, 0.6651687, 0.6655864, 0.6655864, 0.6660472, 0.6663270, 0.6675063, 0.6675063, 0.6679175, 0.6691766, 0.6717786, 0.6722008, 0.6724190, 0.6724190, 0.6734993, 0.6740651, 0.6741628, 0.6750459, 0.6751876, 0.6751876, 0.6757438, 0.6774835, 0.6791210, 0.6797552, 0.6806317, 0.6813713, 0.6830227, 0.6837024, 0.6862980, 0.6863026, 0.6863026, 0.6882792, 0.6882814, 0.6893232, 0.6893232, 0.6903037, 0.6905384, 0.6938377, 0.6940513, 0.6949194, 0.6971060, 0.6977589, 0.6980166, 0.6980166, 0.6992971, 0.6994412, 0.7002137, 0.7010442, 0.7018816, 0.7032650, 0.7032650, 0.7034154, 0.7034154, 0.7046431, 0.7059436, 0.7070661, 0.7097243, 0.7098711, 0.7129453, 0.7189982, 0.7225125, 0.7225689, 0.7231797, 0.7245056, 0.7245056, 0.7263798, 0.7263798, 0.7354288, 0.7375444, 0.7428802, 0.7443422, 0.7467921, 0.7477903, 0.7486113, 0.7533751, 0.7586628, 0.7597566, 0.7644704, 0.7644704, 0.7670121, 0.7735098, 0.7742893, 0.7798698, 0.7841101, 0.7880819, 0.7957391, 0.7992873, 0.8000383, 0.8043133, 0.8338459, 0.8677294, 0.8726290, 0.8737311, 0.8756363, 0.8882736, 0.9069109, 1.0397846, 1.0421989, 1.0978474, 1.1192808, 1.1361908, 1.1468124, 1.1656783, 1.2167401, 1.2269331, 1.2495810, 1.2681650, 1.2681650, 1.2683509, 1.3282386, 1.3847779, 1.5828185, 1.7137831, 1.7343113, 1.7352893, 1.7628201, 1.7743289, 1.7951365, 1.8130570, 1.8139870, 1.8204410, 1.8397625, 1.8503440, 1.8726731, 1.8726731, 1.8859655, 1.8859655, 1.8964056, 1.9003444, 1.9003444, 1.9151167, 1.9151167, 1.9180200, 1.9180200, 1.9197739, 1.9735944, 1.9735944, 1.9938632, 2.0327006, 2.0891714, 2.0891714, 2.1183276, 2.1194102, 2.1378551, 2.1715264, 2.1763355, 2.1763355, 2.4317826, 2.8096035, 2.8347099, 2.8357998, 2.8639452, 2.8751244, 2.8944928, 2.8944928, 2.9152559, 2.9196422, 2.9196422, 2.9535824, 2.9688157, 2.9965576, 2.9995498, 2.9995498, 3.0515012, 3.0656208, 3.0656208, 3.5687049, 3.7065618, 3.7065618, 3.7338760, 3.9406597, 4.1145001, 4.2399704, 4.2399704, 4.2652267, 4.7432286, 5.0984023, 5.1479452, 5.4320903, 5.8240290, 6.7426919, 6.7426919, 6.8166165, 7.1082278, 7.1082278, 7.3517194, 8.0854280, 8.3465560, 8.7507638, 8.9254298, 9.5719867, 10.4757803, 10.7666692, 11.4351191, 14.5687528, 16.0138777, 17.6101034, 29.8560830, 31.2225589, 39.3891216, 39.3891216, 42.2557280, 42.2557280, 110.9494858, 118.1376595, 132.7971671, 138.3057000, 155.2829460, 158.8814854]\n', 'NS(498/372) r=14: [0.5399801, 0.5399801, 0.5481819, 0.5481819, 0.5551292, 0.5551292, 0.5551501, 0.5551501, 0.5566761, 0.5566761, 0.5581880, 0.5581880, 0.5600849, 0.5600849, 0.5640448, 0.5640448, 0.5664140, 0.5669021, 0.5669021, 0.5676899, 0.5676899, 0.5701213, 0.5701213, 0.5704119, 0.5704119, 0.5705991, 0.5705991, 0.5707937, 0.5713649, 0.5713649, 0.5722777, 0.5722777, 0.5727877, 0.5727877, 0.5742150, 0.5742150, 0.5764142, 0.5764142, 0.5768075, 0.5768075, 0.5774012, 0.5774012, 0.5787993, 0.5787993, 0.5799770, 0.5799770, 0.5834401, 0.5834401, 0.5845519, 0.5845519, 0.5859387, 0.5859387, 0.5866697, 0.5866697, 0.5870310, 0.5870310, 0.5871368, 0.5871368, 0.5876035, 0.5876035, 0.5877033, 0.5888455, 0.5891758, 0.5892329, 0.5894499, 0.5894499, 0.5896020, 0.5896020, 0.5907196, 0.5910400, 0.5923628, 0.5923628, 0.5924588, 0.5924798, 0.5926159, 0.5926159, 0.5929649, 0.5929649, 0.5934744, 0.5934744, 0.5934960, 0.5936979, 0.5936979, 0.5947427, 0.5947427, 0.5949265, 0.5949265, 0.5953312, 0.5956283, 0.5956283, 0.5961331, 0.5961331, 0.5965712, 0.5968670, 0.5968670, 0.5979922, 0.5979922, 0.5997451, 0.5997451, 0.6001950, 0.6006911, 0.6010333, 0.6010547, 0.6016050, 0.6022694, 0.6022694, 0.6034413, 0.6034413, 0.6035520, 0.6035520, 0.6040935, 0.6040935, 0.6043269, 0.6043269, 0.6044747, 0.6044747, 0.6048392, 0.6050234, 0.6053094, 0.6053094, 0.6062038, 0.6062038, 0.6068525, 0.6068525, 0.6073449, 0.6073449, 0.6089975, 0.6089975, 0.6095080, 0.6097856, 0.6097856, 0.6100728, 0.6100728, 0.6103447, 0.6105114, 0.6111894, 0.6111949, 0.6114203, 0.6117736, 0.6117736, 0.6124279, 0.6135920, 0.6135920, 0.6140390, 0.6141789, 0.6150386, 0.6150386, 0.6152872, 0.6157625, 0.6157625, 0.6159266, 0.6161144, 0.6161530, 0.6162741, 0.6164182, 0.6164182, 0.6168528, 0.6169754, 0.6169844, 0.6169844, 0.6176954, 0.6178508, 0.6179068, 0.6179068, 0.6179286, 0.6180010, 0.6181346, 0.6181346, 0.6181681, 0.6181681, 0.6186709, 0.6186709, 0.6192391, 0.6192391, 0.6201270, 0.6210003, 0.6210003, 0.6214216, 0.6214216, 0.6217557, 0.6217557, 0.6223997, 0.6223997, 0.6224750, 0.6227848, 0.6232286, 0.6233762, 0.6235013, 0.6237510, 0.6239584, 0.6244619, 0.6244619, 0.6244659, 0.6246593, 0.6246593, 0.6248589, 0.6262908, 0.6262908, 0.6264007, 0.6264007, 0.6278926, 0.6283758, 0.6283758, 0.6297205, 0.6297205, 0.6297966, 0.6305086, 0.6305584, 0.6305584, 0.6307431, 0.6308805, 0.6312840, 0.6313633, 0.6315627, 0.6322262, 0.6323404, 0.6326324, 0.6328334, 0.6328334, 0.6331819, 0.6335935, 0.6335935, 0.6341218, 0.6343074, 0.6344694, 0.6349207, 0.6349737, 0.6358503, 0.6364585, 0.6365037, 0.6366620, 0.6366620, 0.6367418, 0.6367418, 0.6370881, 0.6376829, 0.6376829, 0.6388196, 0.6388474, 0.6388474, 0.6388962, 0.6388962, 0.6389919, 0.6389919, 0.6398357, 0.6409236, 0.6409236, 0.6411897, 0.6412584, 0.6414527, 0.6414738, 0.6417257, 0.6417257, 0.6419870, 0.6421184, 0.6421747, 0.6431714, 0.6431714, 0.6442640, 0.6451057, 0.6451719, 0.6454696, 0.6457176, 0.6462625, 0.6462625, 0.6464545, 0.6464545, 0.6480113, 0.6481766, 0.6492064, 0.6492064, 0.6503388, 0.6503388, 0.6507942, 0.6516032, 0.6516032, 0.6520970, 0.6521691, 0.6524473, 0.6528459, 0.6528459, 0.6545363, 0.6556655, 0.6556655, 0.6557947, 0.6558551, 0.6563755, 0.6566003, 0.6573313, 0.6573390, 0.6574402, 0.6576760, 0.6577280, 0.6594636, 0.6603124, 0.6611312, 0.6611587, 0.6612101, 0.6627707, 0.6630734, 0.6631862, 0.6644650, 0.6648527, 0.6648541, 0.6655332, 0.6656979, 0.6656979, 0.6661895, 0.6664432, 0.6664432, 0.6669402, 0.6674395, 0.6686266, 0.6686266, 0.6695337, 0.6695337, 0.6698765, 0.6699220, 0.6703361, 0.6706393, 0.6723946, 0.6736423, 0.6741007, 0.6762621, 0.6782636, 0.6797885, 0.6798890, 0.6800768, 0.6802801, 0.6803480, 0.6820918, 0.6853382, 0.6866845, 0.6871547, 0.6882608, 0.6882608, 0.6935803, 0.6935803, 0.6953009, 0.6953009, 0.7030830, 0.7034785, 0.7046372, 0.7046372, 0.7051503, 0.7055855, 0.7064701, 0.7064701, 0.7066083, 0.7066083, 0.7119361, 0.7119361, 0.7126472, 0.7126472, 0.7126916, 0.7169503, 0.7169503, 0.7235101, 0.7254169, 0.7334248, 0.7350880, 0.7417493, 0.7426272, 0.7442291, 0.7459146, 0.7510352, 0.7510352, 0.7597475, 0.7608311, 0.7631166, 0.7668879, 0.7668879, 0.7691346, 0.7829451, 0.7834903, 0.7972060, 0.8056564, 0.8518083, 0.8853804, 0.9077173, 0.9077173, 0.9189116, 0.9339603, 0.9341290, 1.0404444, 1.0404444, 1.0411344, 1.0505079, 1.0644941, 1.1222114, 1.1222114, 1.1362771, 1.1498320, 1.1659025, 1.2412160, 1.2450427, 1.2565380, 1.2704401, 1.2704401, 1.3107698, 1.3648355, 1.3819295, 1.6391221, 1.6781722, 1.7167723, 1.7616891, 1.7752858, 1.7837550, 1.7864148, 1.7880327, 1.7950988, 1.7983963, 1.8202961, 1.8202961, 1.8337760, 1.8374020, 1.8441072, 1.8536709, 1.8536709, 1.8575772, 1.8575772, 1.8578701, 1.8638398, 1.8646699, 1.8740932, 1.8775146, 1.8775146, 1.8819801, 1.9075541, 1.9228502, 1.9228502, 1.9233231, 1.9233231, 1.9312387, 1.9420670, 1.9504367, 1.9826655, 2.0393108, 2.0393108, 2.0401565, 2.0401565, 2.0704334, 2.1065955, 2.1187761, 2.1818925, 2.2102854, 2.2789232, 2.4223916, 2.4818221, 2.8630292, 2.9001180, 2.9033752, 2.9860722, 3.0089076, 3.0190886, 3.0586655, 3.5634741, 3.5951956, 3.6052567, 3.7262538, 3.7360468, 4.1260788, 4.1504368, 4.1504368, 4.1664173, 5.1585271, 5.1585271, 5.4359713, 6.4415527, 6.4600126, 6.5350730, 7.0055449, 7.0555501, 7.3649563, 7.4047289, 8.0659380, 8.3067212, 8.3067212, 8.5449024, 8.9564399, 8.9579181, 9.5248349, 11.2305995, 12.3082617, 15.0080669, 17.6976822, 19.6842630, 21.4302948, 21.5019098, 22.4621525, 23.2498246, 27.0748516, 65.0635804, 79.2822153, 235.6091893, 237.9410217, 7500.9494842, 7521.6649197]\n'])

Revising parsing approach

The earlier regex identified patterns like "NS(\d+/\d+)", but it seems it only captured some values from the array. The file shows "498/371," so the 498 might indicate the total or batch size. I'll need to re-analyze, count all unique "r" values, and ensure 498 particles are properly extracted. Counting pattern matches and extracting r values

import re with open(path,'r') as f: text = f.read() pattern = re.compile(r"NS((\d+)/(\d+))\s+r=(\d+):\s+[([^]]+)]") matches = pattern.findall(text) len(matches)

38

Analyzing match groups

There are 38 matches, and each seems to have groups where the first group might indicate the batch index. To ensure I'm capturing the correct data, I'll print the unique "r" values and check if the first number in the first group corresponds to the batch index or another key value. Extracting unique values and first group numbers

r_vals = [int(m[2]) for m in matches] first_nums = [int(m[0]) for m in matches] second_nums = [int(m[1]) for m in matches] list(zip(r_vals, first_nums, second_nums))[:50]

[(0, 498, 364), (1, 498, 373), (2, 498, 368), (3, 498, 367), (4, 498, 372), (5, 498, 374), (6, 498, 373), (7, 498, 374), (8, 498, 374), (9, 498, 380), (10, 498, 378), (11, 498, 366), (12, 498, 371), (13, 498, 379), (14, 498, 372), (15, 498, 375), (16, 498, 365), (17, 498, 377), (18, 498, 375), (19, 498, 376), (20, 498, 371), (21, 498, 377), (22, 498, 368), (23, 498, 365), (24, 498, 380), (25, 498, 379), (26, 498, 385), (27, 498, 370), (28, 498, 371), (29, 498, 372), (30, 498, 380), (31, 498, 369), (32, 498, 366), (33, 498, 374), (34, 498, 381), (35, 498, 367), (36, 498, 366), (37, 498, 371)]

Reevaluating data structure

The 38 matches likely represent different radii buckets indexed from 0 to 37. Each column could contain values corresponding to distances across batches. The file shows 498 particles, and the second group might represent particle IDs. I'll create a CSV with headers for this metadata, then inspect array lengths to verify the count per column. Extracting match array lengths for CSV header creation

lens = [len(m[3].split(',')) for m in matches] lens[:50], set(lens)

([498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498, 498], {498})

Clarifying CSV structure

Each match corresponds to 498 values, so the DataFrame should have 498 rows (particles) and 38 columns (r bins). It seems the user might have expected 498 columns instead. I’ll include metadata in the headers, like particle ID from the second number in the matches (group 2), corresponding to the particle index. Rebuilding CSV structure

I think the second number may indicate the particle ID for each r measurement. To make it simpler, I’ll import the second number as a metadata column. The final CSV will have two header rows: one for "r_index" (r_0 to r_37) and another for "source_particle_id" (second_nums), plus metadata indicating 498 total particles. I'll make this CSV and provide a link for download in the final response. Generating CSV with particle metadata headers

import pandas as pd, re text = open(path).read() pattern = re.compile(r"NS((\d+)/(\d+))\s+r=(\d+):\s+[([^]]+)]") matches = pattern.findall(text)

Build DataFrame: rows = 498 (particles), cols = r_0..r_37

data = {} source_ids = [] for m in matches: r_idx = int(m[2]) src = int(m[1]) nums = [float(x.strip()) for x in m[3].split(',') if x.strip()] data[f"r_{r_idx}"] = nums source_ids.append(src) df = pd.DataFrame(data)

Create multiindex header

header_df = pd.DataFrame([source_ids], columns=df.columns)

Save CSV with two header rows

out_path = "/mnt/data/universe_osc1_batch_04_converted_with_headers.csv" with open(out_path, "w") as f: # Write metadata as comments f.write("# source: universe_osc1_batch_04_--batch_498_501_10000.txt\n") f.write("# total_particles: 498\n") f.write("# columns: r_0..r_37 (r index), source_particle_ids in second header row\n") # write header row: column names f.write(",".join(df.columns) + "\n") # write second header row: source ids f.write(",".join(str(x) for x in source_ids) + "\n") # write data rows df.to_csv(f, index=False, header=False) out_path

'/mnt/data/universe_osc1_batch_04_converted_with_headers.csv'

Thought for 37s

Done

Reply

Thanks — I re-parsed the file and produced a new CSV that includes metadata and header rows so the structure is explicit.

What happened (short):

  • The original text contains 38 blocks NS(498/XXX) r=K: [ ... ] where each [...] list has 498 numeric entries.
  • My earlier CSV had columns r_0..r_37 (38 columns) and 498 rows — one row per particle, one column per r bin.
  • You expected 498 columns (one per particle). The mismatch was just a row/column orientation misunderstanding — the data are 498 rows × 38 columns.

What I produced now: I created a CSV with:

  • A few commented metadata lines at the top:

    # source: universe_osc1_batch_04_--batch_498_501_10000.txt
    # total_particles: 498
    # columns: r_0..r_37 (r index), source_particle_ids in second header row
    
  • First header row: r_0,r_1,...,r_37 (column names)

  • Second header row: the source_particle_id associated with each r column (those XXX values from the NS(498/XXX) tokens)

  • Then the 498 data rows (one row per particle) of numeric values.

Download the new CSV:


Quick notes / suggestions for Grok’s analysis

  • The CSV layout now makes it easy to:

    • Treat each row as a particle’s vector across r bins (shape 38).
    • Or treat each column as an r-bin time series across 498 particles.
  • The source_particle_id per column is included — it may indicate which particle the r measurement was centered on (useful if you want to reconstruct pairwise distances or neighborhood stats).

  • If Grok prefers a different orientation (e.g., columns = particles; rows = r bins), I can transpose and produce that CSV too.

Next steps I can take (pick any)

  • Produce the transposed CSV (particles as columns) if that’s Grok’s preferred layout.
  • Add clearer column names like r_0(src=364), r_1(src=373), ... instead of separate header row.
  • Compute quick summary stats (per-column mean/std, histograms, outlier detection) and produce plots (PNG) highlighting the “far away particles” and showing how initial time step / spatial distribution affected them.
  • Generate a small CSV of pairwise stats: per particle — mean distance, median, max, neighbor count, etc., which often helps spot anomalies.

Tell me which of the next steps you want and I’ll do it now.