asm2bin - cccbook/sp GitHub Wiki
從組合語言到機器碼
Add
Add.asm
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/add/Add.asm
// Computes R0 = 2 + 3
@2
D=A
@3
D=D+A
@0
M=D
Add.hack
0000000000000010
1110110000010000
0000000000000011
1110000010010000
0000000000000000
1110001100001000
Max
Max.asm
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/max/Max.asm
// Computes R2 = max(R0, R1) (R0,R1,R2 refer to RAM[0],RAM[1],RAM[2])
@R0
D=M // D = first number
@R1
D=D-M // D = first number - second number
@OUTPUT_FIRST
D;JGT // if D>0 (first is greater) goto output_first
@R1
D=M // D = second number
@OUTPUT_D
0;JMP // goto output_d
(OUTPUT_FIRST)
@R0
D=M // D = first number
(OUTPUT_D)
@R2
M=D // M[2] = D (greatest number)
(INFINITE_LOOP)
@INFINITE_LOOP
0;JMP // infinite loop
Max.hack
0000000000000000
1111110000010000
0000000000000001
1111010011010000
0000000000001010
1110001100000001
0000000000000001
1111110000010000
0000000000001100
1110101010000111
0000000000000000
1111110000010000
0000000000000010
1110001100001000
0000000000001110
1110101010000111
Rect
Rect.asm
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/rect/Rect.asm
// Draws a rectangle at the top-left corner of the screen.
// The rectangle is 16 pixels wide and R0 pixels high.
@0
D=M
@INFINITE_LOOP
D;JLE
@counter
M=D
@SCREEN
D=A
@address
M=D
(LOOP)
@address
A=M
M=-1
@address
D=M
@32
D=D+A
@address
M=D
@counter
MD=M-1
@LOOP
D;JGT
(INFINITE_LOOP)
@INFINITE_LOOP
0;JMP
Rect.hack
0000000000000000
1111110000010000
0000000000010111
1110001100000110
0000000000010000
1110001100001000
0100000000000000
1110110000010000
0000000000010001
1110001100001000
0000000000010001
1111110000100000
1110111010001000
0000000000010001
1111110000010000
0000000000100000
1110000010010000
0000000000010001
1110001100001000
0000000000010000
1111110010011000
0000000000001010
1110001100000001
0000000000010111
1110101010000111