asm2bin - cccbook/sp GitHub Wiki

從組合語言到機器碼

Add

Add.asm

// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/add/Add.asm

// Computes R0 = 2 + 3

@2
D=A
@3
D=D+A
@0
M=D

Add.hack

0000000000000010
1110110000010000
0000000000000011
1110000010010000
0000000000000000
1110001100001000

Max

Max.asm

// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/max/Max.asm

// Computes R2 = max(R0, R1)  (R0,R1,R2 refer to  RAM[0],RAM[1],RAM[2])

   @R0
   D=M              // D = first number
   @R1
   D=D-M            // D = first number - second number
   @OUTPUT_FIRST
   D;JGT            // if D>0 (first is greater) goto output_first
   @R1
   D=M              // D = second number
   @OUTPUT_D
   0;JMP            // goto output_d
(OUTPUT_FIRST)
   @R0             
   D=M              // D = first number
(OUTPUT_D)
   @R2
   M=D              // M[2] = D (greatest number)
(INFINITE_LOOP)
   @INFINITE_LOOP
   0;JMP            // infinite loop

Max.hack

0000000000000000
1111110000010000
0000000000000001
1111010011010000
0000000000001010
1110001100000001
0000000000000001
1111110000010000
0000000000001100
1110101010000111
0000000000000000
1111110000010000
0000000000000010
1110001100001000
0000000000001110
1110101010000111

Rect

Rect.asm

// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/06/rect/Rect.asm

// Draws a rectangle at the top-left corner of the screen.
// The rectangle is 16 pixels wide and R0 pixels high.

   @0
   D=M
   @INFINITE_LOOP
   D;JLE 
   @counter
   M=D
   @SCREEN
   D=A
   @address
   M=D
(LOOP)
   @address
   A=M
   M=-1
   @address
   D=M
   @32
   D=D+A
   @address
   M=D
   @counter
   MD=M-1
   @LOOP
   D;JGT
(INFINITE_LOOP)
   @INFINITE_LOOP
   0;JMP

Rect.hack

0000000000000000
1111110000010000
0000000000010111
1110001100000110
0000000000010000
1110001100001000
0100000000000000
1110110000010000
0000000000010001
1110001100001000
0000000000010001
1111110000100000
1110111010001000
0000000000010001
1111110000010000
0000000000100000
1110000010010000
0000000000010001
1110001100001000
0000000000010000
1111110010011000
0000000000001010
1110001100000001
0000000000010111
1110101010000111