Basics - brendanjmeade/celeri GitHub Wiki
celeri
,
The structure of the linear operator for the block model problem in \begin{bmatrix}
\mathbf{v} \\
\omega_\mathrm{c} \\
\mathbf{s}_\mathrm{c} \\
\mathbf{0} \\
\mathbf{t}_\mathrm{c}(\mathrm{m}_1) \\
\vdots \\
\mathbf{0} \\
\mathbf{t}_\mathrm{c}(\mathrm{m}_n)
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{R} & \mathbf{T}(\mathrm{m}_1) & \cdots & \mathbf{T}(\mathrm{m}_n) & \mathbf{E} & \mathbf{M} \\
\mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{R}_\mathrm{s} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{S}(\mathrm{m}_1) & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}(\mathrm{m}_n) & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{I} & \mathbf{0} & \mathbf{0}
\end{bmatrix}
\begin{bmatrix}
\omega \\
\mathbf{t}(\mathrm{m}_1) \\
\vdots \\
\mathbf{t}(\mathrm{m}_n) \\
\epsilon \\
\mathbf{m}
\end{bmatrix}
where for the data vector,
$\mathbf{v}$ is a vector of geodetic velocities,
$\omega_\mathrm{c}$ are a priori constraints on block motion,
$\mathbf{s}_\mathrm{c}$ are a priori constraints on fault slip rates,
$\mathbf{0}$ is a data constraint for the TDE smoothing matrix,
$\mathbf{t}^1_\mathrm{c}$ are a priori constraints on TDE slip rates for mesh $i$.
For the design matrix, $\mathbf{R}$ is an operator relating block motion and elastic deformation around fully coupled segments to geodetic velocities, $\mathbf{T}^i$ relates TDE slip rates to geodetic velocities for mesh $i$, $\mathbf{E}$ relates homogeneous intrablock strain rates to geodetic velocities, and $\mathbf{P}$ relates volume change rates at Mogi sources to geodetic velocities. For constraints, $\mathbf{R}_\mathrm{s}$ projects block motion into fault slip rates and $\mathbf{S}^i$ smooths TDE slip rates.
Finally, we estimate $\omega$ as block motion vectors, $\mathbf{t}^i$ as TDE slip rates for mesh $i$, $\epsilon$ as intrablock strain rates, and $\mathbf{p}$ as volume change rates at Mogi sources.
Construction with InSAR LOS data
\begin{bmatrix}
\mathbf{v} \\
\mathbf{LOS} \\
\omega_\mathrm{c} \\
\mathbf{s}_\mathrm{c} \\
\mathbf{0} \\
\mathbf{t}_\mathrm{c}(\mathrm{m}_1) \\
\vdots \\
\mathbf{0} \\
\mathbf{t}_\mathrm{c}(\mathrm{m}_n)
\end{bmatrix}
=
\begin{bmatrix}
\mathbf{R}_\mathbf{v} & \mathbf{T}_\mathbf{v}(\mathrm{m}_1) & \cdots & \mathbf{T}_\mathbf{v}(\mathrm{m}_n) & \mathbf{E}_\mathbf{v} & \mathbf{M}_\mathbf{v} \\
\mathbf{R}_\mathbf{LOS} & \mathbf{T}_\mathbf{LOS}(\mathrm{m}_1) & \cdots & \mathbf{T}_\mathbf{LOS}(\mathrm{m}_n) & \mathbf{E}_\mathbf{LOS} & \mathbf{M}_\mathbf{LOS} \\
\mathbf{I} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{R}_\mathrm{s} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{S}(\mathrm{m}_1) & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{S}(\mathrm{m}_n) & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{I} & \mathbf{0} & \mathbf{0}
\end{bmatrix}
\begin{bmatrix}
\omega \\
\mathbf{t}(\mathrm{m}_1) \\
\vdots \\
\mathbf{t}(\mathrm{m}_n) \\
\epsilon \\
\mathbf{m}
\end{bmatrix}
Locking depth is positive down
Summary of Okada slip rate conventions:
type | sign | interpretation |
---|---|---|
strike-slip | positive | left-lateral |
strike-slip | negative | right-lateral |
dip-slip | positive | convergence |
dip-slip | negative | extension |
tensile-slip | positive | extension |
tensile-slip | negative | convergence |
- Note: The difference in sign for convergence and extension for dip-slip and tensile-slip is not idea but it seems consistent with Okada? Should I change this so that it is more intiutive (e.g., positive numbers are always convergence) or leave as is for consistency with Okada?