Getting Started - bobmatnyc/ai-trackdown GitHub Wiki
Getting Started with AI Track Down
Welcome to AI Track Down! This comprehensive guide will help you set up revolutionary markdown-based task management for AI development teams.
🎯 What You'll Learn
By the end of this guide, you'll understand:
- Why AI Track Down is different from traditional task managers
- How to set up your first AI-native project using templates
- How to track AI token usage and costs manually
- How to leverage llms.txt for instant AI context
- How to integrate with existing development workflows
🚀 Quick Setup (5 minutes)
Prerequisites
- Git (for version control)
- A text editor (VS Code, vim, etc.)
- Basic familiarity with markdown
Step 1: Copy Templates
# Copy the AI Track Down templates to your project
git clone https://github.com/bobmatnyc/ai-trackdown.git
cd ai-trackdown
# Copy templates to your project
cp -r templates/* my-ai-project/
cd my-ai-project
Step 2: Setup Your Project Structure
# Create the recommended structure manually
mkdir -p .ai-trackdown tasks/epics tasks/issues tasks/tasks docs
# Initialize git repository if needed
git init
The manual setup creates this structure:
my-ai-project/
├── .ai-trackdown/
│ ├── config.yaml # Project configuration
│ └── llms.txt # AI context index (manually maintained)
├── tasks/
│ ├── epics/ # High-level project goals
│ ├── issues/ # Development issues/features
│ └── tasks/ # Granular implementation tasks
├── docs/
│ └── llms-full.txt # Complete project context
└── AI-TRACKDOWN.md # Project overview dashboard
Step 3: Create Your First Epic
An epic represents a major feature or project milestone. Copy the epic template:
# Copy epic template
cp epic-template.md tasks/epics/EPIC-001-user-authentication-system.md
# Edit the template with your project details
vim tasks/epics/EPIC-001-user-authentication-system.md
The epic template includes:
- Token budget tracking
- Success metrics
- Linked issues
- AI context markers
Step 4: Add Issues to Your Epic
Issues are specific features or requirements within an epic. Copy and customize issue templates:
# Copy issue templates
cp issue-template.md tasks/issues/ISSUE-001-implement-oauth2-login.md
cp issue-template.md tasks/issues/ISSUE-002-add-password-reset-flow.md
cp issue-template.md tasks/issues/ISSUE-003-implement-two-factor-auth.md
# Update each issue file with specific requirements
Step 5: Break Down Issues into Tasks
Tasks are granular implementation steps. Use the task template:
# Copy task templates
cp task-template.md tasks/tasks/TASK-001-create-login-form-component.md
cp task-template.md tasks/tasks/TASK-002-setup-oauth2-provider-configs.md
cp task-template.md tasks/tasks/TASK-003-implement-jwt-token-handling.md
# Customize each task with implementation details
Step 6: Start Tracking AI Usage
This is where AI Track Down becomes revolutionary. Manually track token usage in task files:
# In your task files, update the token_usage section:
token_usage:
total: 1247
by_agent:
claude: 892
gpt4: 355
sessions:
- date: 2025-07-07
agent: claude
count: 1247
purpose: "Requirements analysis"
Step 7: Maintain AI Context
Make your project instantly readable by AI agents by maintaining llms.txt files:
# Manually update the main llms.txt file
vim .ai-trackdown/llms.txt
# Include project overview, current priorities, and key files
# Follow the llms.txt standard format
🧠 Understanding the AI-First Approach
Traditional vs AI Track Down Workflow
Traditional Task Management:
- Human creates task in web UI
- AI agent needs context via API
- Context is incomplete or stale
- Token usage is invisible
- Knowledge is siloed
AI Track Down Workflow:
- Task created in markdown (human or AI)
- AI context embedded directly in files
- llms.txt provides instant project understanding
- Token usage tracked manually in task files
- Knowledge lives with code in git
The Power of Markdown-First
Why Markdown?
- Human Readable: No special tools needed to view/edit
- AI Friendly: Optimal token efficiency for LLMs
- Git Native: Version control, branching, merging just work
- Tool Agnostic: Works with any editor, IDE, or automation
- Future Proof: Will be readable decades from now
Token Economics
AI Track Down introduces token economics to development through manual tracking:
# Track costs per epic/issue/task in AI-TRACKDOWN.md
Token Usage Report (This Week)
============================
EPIC-001 (Auth System): 12,847 tokens ($0.39) - 25.7% of budget
├── ISSUE-001 (OAuth): 4,892 tokens ($0.15)
├── ISSUE-002 (Reset): 3,234 tokens ($0.10)
└── ISSUE-003 (2FA): 4,721 tokens ($0.14)
Top Token Consumers:
1. Claude (requirements): 8,456 tokens
2. GPT-4 (code review): 3,234 tokens
3. Copilot (implementation): 1,157 tokens
You can aggregate this data manually or create scripts to parse token usage from task files.
📝 Working with Tasks
Task Anatomy
Every task file follows this structure:
---
id: ISSUE-001
type: issue
title: Implement OAuth2 login
status: in-progress
epic: EPIC-001
assignee: @developer
created: 2025-07-07T10:00:00Z
updated: 2025-07-07T14:30:00Z
labels: [authentication, oauth, security]
estimate: 8
token_usage:
total: 1247
by_agent:
claude: 892
gpt4: 355
sync:
github: 145
jira: AUTH-234
---
# Implement OAuth2 login
## Description
Create secure OAuth2 authentication flow supporting Google and GitHub providers.
## Acceptance Criteria
- [ ] OAuth2 provider configuration
- [ ] Authorization code flow implementation
- [ ] Token exchange and validation
- [ ] User profile integration
- [x] Security review completed
## Technical Implementation
- Use PKCE flow for enhanced security
- Store tokens securely with httpOnly cookies
- Implement refresh token rotation
## AI Context
<!-- AI_CONTEXT_START -->
This implements OAuth2 authentication for the user management system.
Key files: src/auth/oauth.js, src/components/OAuthButton.tsx
Dependencies: passport-oauth2, jsonwebtoken
Security considerations: PKCE, CSRF protection, secure cookie handling
<!-- AI_CONTEXT_END -->
## Related Tasks
- Blocks: TASK-003, TASK-004
- Blocked by: TASK-001
- Related: ISSUE-003 (2FA integration)
Status Management
AI Track Down supports flexible status workflows through manual file updates:
# Update task status by editing the YAML frontmatter
vim tasks/issues/ISSUE-001-implement-oauth2-login.md
# Change status field manually:
# status: todo → in-progress → in-review → done
# Update assignee field:
# assignee: @developer
# Add/update labels:
# labels: [priority-high, security, authentication]
# Update estimates:
# estimate: 8
Git Integration
AI Track Down integrates seamlessly with git workflows through conventional commits:
# Use conventional commit messages that reference tasks
git commit -m "feat(ISSUE-001): implement OAuth2 flow"
git commit -m "fix(ISSUE-001): resolve PKCE validation"
git commit -m "close(ISSUE-001): OAuth2 implementation complete"
# Manually update task status after commits
vim tasks/issues/ISSUE-001-implement-oauth2-login.md
Branch Naming Convention
# Feature branches
git checkout -b feature/ISSUE-001-oauth2-login
# Bug fixes
git checkout -b bugfix/TASK-042-fix-token-validation
# Epic branches
git checkout -b epic/EPIC-001-authentication-system
🤖 AI Agent Integration
Making Your Project AI-Discoverable
The llms.txt standard makes your project instantly understandable:
# .ai-trackdown/llms.txt
# AI Track Down Project Index
# Generated: 2025-07-07T15:00:00Z
## Project Overview
User authentication system for SaaS application
Active epics: 1 (Authentication System)
Open issues: 3
Current focus: OAuth2 implementation
## Key Files
/tasks/epics/: Project epics and major features
/tasks/issues/: Development issues and requirements
/tasks/tasks/: Implementation tasks and subtasks
/AI-TRACKDOWN.md: Project status dashboard
## Current Priorities
1. EPIC-001: User Authentication (in-progress, 70% complete)
- ISSUE-001: OAuth2 login (in-progress)
- ISSUE-002: Password reset (pending)
- ISSUE-003: Two-factor auth (pending)
## Integration Status
GitHub: Synced (2025-07-07T14:55:00Z)
Token Budget: 50,000 (25.7% used)
AI Agent Workflows
Context Retrieval:
# AI agents can read llms.txt files directly
cat .ai-trackdown/llms.txt
# Or read specific task context
cat tasks/epics/EPIC-001-user-authentication-system.md
cat tasks/issues/ISSUE-001-implement-oauth2-login.md
Token Tracking:
# AI agents can update token usage in task files manually
# Add to the task file's frontmatter:
token_usage:
total: 234
sessions:
- date: 2025-07-07
agent: claude
count: 234
operation: code-review
Task Management:
# AI agents can create new tasks using templates
cp task-template.md tasks/tasks/TASK-004-new-task.md
# Then customize the template with specific details
🔄 Integration with External Systems
GitHub Issues Integration
Create configuration templates for GitHub integration:
# .ai-trackdown/integrations/github.yaml
repository: myorg/myrepo
mapping:
issue:
title: title
body: |
${description}
## Acceptance Criteria
${acceptance_criteria}
labels: labels
assignees:
- transform: strip_at(assignee)
Use the mapping configuration to manually sync or create scripts for automated sync.
Jira Integration
Create Jira mapping templates:
# .ai-trackdown/integrations/jira.yaml
server: https://company.atlassian.net
project: AUTH
mapping:
story_points: estimate
epic_link: epic
status_mapping:
todo: "To Do"
in-progress: "In Progress"
done: "Done"
Linear Integration
Create Linear configuration:
# .ai-trackdown/integrations/linear.yaml
team: engineering
status_mapping:
todo: "Backlog"
in-progress: "In Progress"
in-review: "In Review"
done: "Done"
📊 Reporting and Analytics
Token Usage Reports
Create manual reports by analyzing task files:
# Parse token usage from all task files
grep -r "token_usage:" tasks/ | sort
# Create weekly reports manually
# Or build scripts to aggregate data from YAML frontmatter
Project Health
Monitor project status through dashboard files:
# Review project status in AI-TRACKDOWN.md
cat AI-TRACKDOWN.md
# Check epic progress manually
grep -A 10 "EPIC-001" tasks/epics/*.md
# Track velocity by reviewing completed tasks
grep "status: done" tasks/**/*.md
AI Efficiency Metrics
Analyze AI usage patterns manually:
# Review token usage patterns across tasks
grep -r "agent:" tasks/ | sort | uniq -c
# Analyze context quality by reviewing AI_CONTEXT blocks
grep -A 5 "AI_CONTEXT_START" tasks/**/*.md
🛠️ Advanced Configuration
Custom Templates
Create custom templates for your team:
# Copy base template and customize
cp issue-template.md security-review-template.md
# Edit the custom template for security reviews
vim security-review-template.md
# Use custom template by copying it
cp security-review-template.md tasks/issues/ISSUE-XXX-security-review.md
Configuration Management
# .ai-trackdown/config.yaml
project:
name: "My AI Project"
token_budget: 50000
default_assignee: "@team-lead"
templates:
epic: "epic-template.md"
issue: "issue-template.md"
task: "task-template.md"
security_review: "security-review-template.md"
Team Workflows
# .ai-trackdown/config.yaml
workflows:
development:
statuses: [todo, in-progress, in-review, done]
labels: [feature, bug, enhancement, security]
assignees: ["@dev1", "@dev2", "@dev3"]
🎓 Best Practices
1. Token Budget Management
- Set realistic token budgets per epic
- Monitor usage weekly
- Use token reports to optimize AI interactions
2. Context Quality
- Write clear, concise AI context blocks
- Update context as requirements evolve
- Include relevant file paths and dependencies
3. Git Integration
- Use conventional commit messages
- Reference task IDs in all commits
- Keep task branches focused and short-lived
4. Team Collaboration
- Establish consistent labeling conventions
- Use assignee mentions consistently
- Regular sync with external systems
5. AI Agent Guidelines
- Train agents to update token usage
- Provide clear task context requirements
- Establish agent permission boundaries
🚨 Troubleshooting
Common Issues
"Invalid YAML frontmatter"
# Validate YAML manually using yaml parsers
python -c "import yaml; yaml.safe_load(open('tasks/issues/ISSUE-001.md').read().split('---')[1])"
# Or use online YAML validators
"Integration issues"
# Check configuration files
cat .ai-trackdown/integrations/github.yaml
# Verify file permissions
ls -la .ai-trackdown/
"Missing templates"
# Ensure templates directory exists
ls templates/
# Copy missing templates from the framework
cp -r /path/to/ai-trackdown/templates/* .
"Token tracking inconsistencies"
# Manually verify token data in task files
grep -r "token_usage:" tasks/ | head -5
# Check for malformed YAML frontmatter
Getting Help
- Documentation: Browse this wiki for detailed guides
- Examples: Check examples/ for common configurations
- GitHub Issues: Report bugs and request features
- Discussions: Ask questions and share best practices
🎯 Next Steps
Now that you understand the basics:
- Set up your first real project with AI Track Down
- Configure integrations with your existing tools
- Establish team workflows and conventions
- Start tracking token usage and optimize AI costs
- Explore advanced features like automation and custom templates
Learning Resources
- AI Agent Guide - Complete AI agent setup
- Templates Reference - All available templates
- Best Practices - Team workflow recommendations
- Examples Walkthrough - Real-world examples
Welcome to the future of AI-native project management! 🚀