Experimental phasing - biochem-fan/cheetah GitHub Wiki
Experimental Phasing
Experimental phasing at SFX is challenging but now becoming more and more accessible. Here you will learn how to extract anomalous signals and how to solve the structure de novo.
Merge without Friedel's law
We will merge our lysozyme dataset without Friedel's law, that is, in 422
not 4/mmm
pointgroup.
Modify our merging script and save it as process_anom_scale.sh
,
#!/bin/bash
inp=$1
out=${inp%.stream}-anom-scale.hkl # added "-anom"
pg="422" # was 4/mmm
source ~sacla_sfx_app/setup.sh
process_hkl -y $pg --scale --odd-only -i $inp -o ${out}1 &
process_hkl -y $pg --scale --even-only -i $inp -o ${out}2 &
process_hkl -y $pg --scale -i $inp -o $out &
wait
and run it.
sh process_anom_scale.sh 266711-266721-dirax.stream
Also modify our statistics script and save it as stat_anom.sh
,
#!/bin/bash
inp=$1
inp1=${1}1
inp2=${1}2
basename=${1%.hkl}
fom="R1I R2 Rsplit CC CCstar CCano" # added CCano
pdb="../lysozyme-opt.cell"
pg="422" # was 4/mmm
highres="1.9"
source ~sacla_sfx_app/setup.sh
if [ ! -d "stat" ]; then
mkdir stat
fi
for mode in $fom
do
compare_hkl $inp1 $inp2 -y $pg -p $pdb --fom=$mode --highres=$highres --nshells=20 --shell-file="stat/${basename}-$mode".dat 2>>stat/${basename}.log
done
check_hkl -p $pdb --nshells=20 --highres=$highres -y $pg --shell-file="stat/${basename}-shells".dat $inp 2>>stat/${basename}.log
and run it.
sh stat_anom.sh 266711-266721-dirax-anom-scale.hkl
CCano indicates some anomalous signals, although very weak.
$ cat stat/266711-266721-dirax-anom-scale-CCano.dat
1/d centre CCano nref d / A Min 1/nm Max 1/nm
1.166 0.1341869 338 8.58 0.387 1.944
2.195 0.2082471 381 4.56 1.944 2.446
2.622 0.1037050 399 3.81 2.446 2.799
2.939 0.1599720 399 3.40 2.799 3.080
3.198 0.1493716 395 3.13 3.080 3.317
3.421 0.0919954 410 2.92 3.317 3.524
3.617 0.1278523 403 2.76 3.524 3.710
3.794 0.1092259 413 2.64 3.710 3.879
3.956 0.1620875 409 2.53 3.879 4.034
Calculate anomalous difference map
Here we use ANODE, which is distributed with the SHELX suite, to calculate anomalous difference map.
First, convert the merged intensities into the sca
format through the mtz
format.
create-mtz 266711-266721-dirax-anom-scale.hkl
phenix.reflection_file_converter 266711-266721-dirax-anom-scale.mtz --sca 266711-266721-dirax-anom-scale.sca
You can use mtz2sca
utility in the CCP4 suite instead of phenix.reflection_file_converter
.
Download the referernce model PDBID 4YOP
and save it as anode.ent
. This model is used to calculate the phase.
Next, make an input file shelxc.inp
for SHELXC
. Since we are not going to run SHELXD, only
the first three lines are necessary. The following lines are included just for completeness.
For details, see SHELXC keywords and
SHELXD manual.
CELL 1.77 78.92 78.92 37.88 90 90 90
SPAG P43212
SAD 266711-266721-dirax-anom-scale.sca
SFAC S
FIND 6
DSUL 4
MIND -3.5
SHEL 100 2.2
NTRY 10000
Run SHELXC
followed by ANODE
.
shelxc anode < shelxc.inp | tee shelxc.log
anode anode # add -d2.2 to set the high resolution limit at 2.2 A.
Locations and heights of peaks are printed and saved to anode.lsa
.
Averaged anomalous densities (sigma)
7.54 SD_MET
7.42 CL_CL
5.99 SG_CYS
... (omitted) ...
Strongest unique anomalous peaks
X Y Z Height(sig) SOF Nearest atom
S1 0.34688 -0.06475 0.48307 8.61 1.000 0.113 SD_A:MET105
S2 0.37861 -0.00792 0.63836 8.46 1.000 0.162 SG_A:CYS115
S3 0.40410 -0.10549 0.31108 7.93 1.000 0.306 CL_A:CL1002
S4 0.20502 -0.01705 0.24550 7.27 1.000 0.094 SG_A:CYS76
S5 0.25505 -0.07289 0.62559 6.68 1.000 0.163 SD_A:MET12
S6 0.16500 0.09116 0.30155 6.50 1.000 0.246 SG_A:CYS80
S7 0.26595 -0.10897 0.91974 6.48 1.000 0.166 SG_A:CYS6
S8 0.37493 -0.01954 0.69397 5.86 1.000 0.320 SG_A:CYS30
S9 0.18133 0.07180 0.30027 5.68 1.000 0.167 SG_A:CYS64
S10 0.28271 -0.12114 0.87932 5.33 1.000 0.276 SG_A:CYS127
The map is saved as anode.pha
. You can open it in Coot. You have to open
the model file anode.ent
first so that Coot knows the unit cell parameters.
Solving a structure de novo by Cu-SAD
We use a Cu-SAD dataset at CXIDB #34.
TODO Write!