tensorboard - beyondnlp/nlp GitHub Wiki
-
tensorboard ์คํ์
- tensorboard --logdir=๋ก๊ทธ๋๋ ํ ๋ฆฌ
-
๋ก๊ทธ๋ฅผ ์ด๋์ ์ ์ฅํ ์ง ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก์ ํจ๊นจ intance๋ฅผ ์ป์ด์จ๋ค.
- 56 summary_write = tf.summary.FileWriter("logistic_logs/", graph_def=sess.graph_def)
-
๊ทธ๋ํ๋ก ๊ทธ๋ฆด๋ ค๊ณ ํ๋ ๋ณ์๊ฐ์ ์ค์ ํ๋ค.
-
summary_op = tf.summary.merge_all()()
- 62 tf.summary.scalar("cost", cost )
- 63 tf.summary.scalar("eval", eval_op )
- 64 summary_op = tf.summary.merge_all()
-
์จ๋จธ๋ฆฌ์ ์ถ๋ ฅํ ๊ฐ์ ๋ชจ์์ summy_write์ ์ถ๊ฐ
- 88 summary_str = sess.run(summary_op, feed_dict=val_feed_dict)
- 89 summary_write.add_summary( summary_str, epoch );
- 90 summary_write.flush()
44 with tf.Graph().as_default() as sess:
45 x = tf.placeholder( "float", [None, 784])
46 y = tf.placeholder( "float", [None,10])
47
48 output = inference(x)
49 cost = get_loss(output,y)
50
51 global_step = tf.Variable(0,name='global_step', trainable=False)
52 train_op = training(cost, global_step)
53 eval_op = evaluate(output,y)
54 #saver = tf.train.Saver()
55 sess = tf.Session()
56 summary_write = tf.summary.FileWriter("logistic_logs/", graph_def=sess.graph_def)
57
58 init_op = tf.initialize_all_variables()
59
60 sess.run(init_op)
61
62 tf.summary.scalar("cost", cost )
63 tf.summary.scalar("eval", eval_op )
64 summary_op = tf.summary.merge_all()
65 for epoch in range(training_epochs):
66 avg_cost = 0
67 total_batch = int(mnist.train.num_examples/batch_size)
68
69 for i in range(total_batch):
70 mbatch_x, mbatch_y = mnist.train.next_batch(batch_size)
71 feed_dict = {x:mbatch_x, y:mbatch_y}
72 sess.run(train_op, feed_dict=feed_dict)
73 minibatch_cost = sess.run(cost, feed_dict=feed_dict)
74 avg_cost += minibatch_cost/total_batch
75
76
77
78
79
80 if epoch % display_step == 0 :
81 val_feed_dict = {
82 x : mnist.validation.images,
83 y : mnist.validation.labels
84 }
85 accuracy = sess.run(eval_op, feed_dict=val_feed_dict)
86 print( "Valid Error:", (1-accuracy))
87
88 summary_str = sess.run(summary_op, feed_dict=val_feed_dict)
89 summary_write.add_summary( summary_str, epoch );
90 summary_write.flush()
91
92 #saver.save( sess, "logistic_logs/model-checkpoint", global_step=global_step)
93 test_feed_dict = {
94 x : mnist.test.images,
95 y : mnist.test.labels
96 }
97
98 accuracy = sess.run(eval_op, feed_dict=test_feed_dict)
99 print( "Test Error:", accuracy)