BMA231 V: Intro to R - bcfgothenburg/HT24 GitHub Wiki
The aim of these exercises is to introduce you to R. Due to the limited time we have, these exercises focus only on elements that are used when analyzing variants and gene expression datasets. Learning R requires a lot of time and practice and there are several great resources that you can visit later on if you want to deepen your knowledge (and you should!).
-
Open
RStudio
-
Type the following in the
console
and press ⏎234 / 543
You should get
0.4309392
-
Check your current working directory, type:
getwd()
You should get something like
"C:/Users/Marcela/University of Gothenburg/Bioinformatics Core Facility - Documents/Masters_NG01CF/2022/03_r"
-
Change your working directory to your Desktop
-
Session
->Set Working Directory
->Choose Directory
-> select your Desktop
In your
console
a similar text should appear:setwd("C:/Users/Marcela/Desktop")
This is the command line that was used to change the directory.
-
-
List the files in your Desktop:
list.files()
Q1. How many files/directories do you have?
Click here for output
I have 42!
As mentioned before, scripts are a great way to document your analyses, so you can revisit them later on.
- Open a new file
-
File
->New file
->R script
-
Name it
R1_yourName.R
You will see the name of your script as a tab in theSource
panelClick here for output
-
It is a good idea to save any R script using .R
as file extension, so you know that it is R code in the file. Also, using spaces in file names may cause trouble later on, so we try to use “_” instead.
Commenting your code will make it easier to read or to remember what the code does. Add the following code at the top of your script (modify accordingly):
# Name: TYPE_YOUR_NAME_HERE
# Date: TYPE_TODAYS_DATE_HERE
# Description: practicing R
Anything written on a line after #
will be disregarded when running the code, so it is a perfect way to add comments across the script.
-
Save your code
-
Ctrl
+S
NOTE: Do this continuously
-
-
Type
list.files()
in theSource
panel, or the script (as we will call it from now on) -
Place the cursor on the line and
- either click the
Run
button in the top left corner of the editor, - or press
Ctrl
+Enter
This will run the code and print out the results in the
Console
- either click the
For these exercises, if it gets tricky have a look a the answers we provide, however try to come up with the answer yourself. Also, remember that there may be more than one way to answer, so you may get the answer with a different code which is more than fine!
Let's start simple
-
Create a vector with the numbers
1, 2, … , 1000
and assign it to the variablex
-
Display the values of
x
to check you have the correct valuesClick here for output
> x <- seq(1:1000) > x [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 [14] 14 15 16 17 18 19 20 21 22 23 24 25 26 [27] 27 28 29 30 31 32 33 34 35 36 37 38 39 [40] 40 41 42 43 44 45 46 47 48 49 50 51 52 [53] 53 54 55 56 57 58 59 60 61 62 63 64 65 [66] 66 67 68 69 70 71 72 73 74 75 76 77 78 [79] 79 80 81 82 83 84 85 86 87 88 89 90 91 [92] 92 93 94 95 96 97 98 99 100 101 102 103 104 [105] 105 106 107 108 109 110 111 112 113 114 115 116 117 [118] 118 119 120 121 122 123 124 125 126 127 128 129 130 [131] 131 132 133 134 135 136 137 138 139 140 141 142 143 [144] 144 145 146 147 148 149 150 151 152 153 154 155 156 [157] 157 158 159 160 161 162 163 164 165 166 167 168 169 [170] 170 171 172 173 174 175 176 177 178 179 180 181 182 [183] 183 184 185 186 187 188 189 190 191 192 193 194 195 [196] 196 197 198 199 200 201 202 203 204 205 206 207 208 [209] 209 210 211 212 213 214 215 216 217 218 219 220 221 [222] 222 223 224 225 226 227 228 229 230 231 232 233 234 [235] 235 236 237 238 239 240 241 242 243 244 245 246 247 [248] 248 249 250 251 252 253 254 255 256 257 258 259 260 [261] 261 262 263 264 265 266 267 268 269 270 271 272 273 [274] 274 275 276 277 278 279 280 281 282 283 284 285 286 [287] 287 288 289 290 291 292 293 294 295 296 297 298 299 [300] 300 301 302 303 304 305 306 307 308 309 310 311 312 [313] 313 314 315 316 317 318 319 320 321 322 323 324 325 [326] 326 327 328 329 330 331 332 333 334 335 336 337 338 [339] 339 340 341 342 343 344 345 346 347 348 349 350 351 [352] 352 353 354 355 356 357 358 359 360 361 362 363 364 [365] 365 366 367 368 369 370 371 372 373 374 375 376 377 [378] 378 379 380 381 382 383 384 385 386 387 388 389 390 [391] 391 392 393 394 395 396 397 398 399 400 401 402 403 [404] 404 405 406 407 408 409 410 411 412 413 414 415 416 [417] 417 418 419 420 421 422 423 424 425 426 427 428 429 [430] 430 431 432 433 434 435 436 437 438 439 440 441 442 [443] 443 444 445 446 447 448 449 450 451 452 453 454 455 [456] 456 457 458 459 460 461 462 463 464 465 466 467 468 [469] 469 470 471 472 473 474 475 476 477 478 479 480 481 [482] 482 483 484 485 486 487 488 489 490 491 492 493 494 [495] 495 496 497 498 499 500 501 502 503 504 505 506 507 [508] 508 509 510 511 512 513 514 515 516 517 518 519 520 [521] 521 522 523 524 525 526 527 528 529 530 531 532 533 [534] 534 535 536 537 538 539 540 541 542 543 544 545 546 [547] 547 548 549 550 551 552 553 554 555 556 557 558 559 [560] 560 561 562 563 564 565 566 567 568 569 570 571 572 [573] 573 574 575 576 577 578 579 580 581 582 583 584 585 [586] 586 587 588 589 590 591 592 593 594 595 596 597 598 [599] 599 600 601 602 603 604 605 606 607 608 609 610 611 [612] 612 613 614 615 616 617 618 619 620 621 622 623 624 [625] 625 626 627 628 629 630 631 632 633 634 635 636 637 [638] 638 639 640 641 642 643 644 645 646 647 648 649 650 [651] 651 652 653 654 655 656 657 658 659 660 661 662 663 [664] 664 665 666 667 668 669 670 671 672 673 674 675 676 [677] 677 678 679 680 681 682 683 684 685 686 687 688 689 [690] 690 691 692 693 694 695 696 697 698 699 700 701 702 [703] 703 704 705 706 707 708 709 710 711 712 713 714 715 [716] 716 717 718 719 720 721 722 723 724 725 726 727 728 [729] 729 730 731 732 733 734 735 736 737 738 739 740 741 [742] 742 743 744 745 746 747 748 749 750 751 752 753 754 [755] 755 756 757 758 759 760 761 762 763 764 765 766 767 [768] 768 769 770 771 772 773 774 775 776 777 778 779 780 [781] 781 782 783 784 785 786 787 788 789 790 791 792 793 [794] 794 795 796 797 798 799 800 801 802 803 804 805 806 [807] 807 808 809 810 811 812 813 814 815 816 817 818 819 [820] 820 821 822 823 824 825 826 827 828 829 830 831 832 [833] 833 834 835 836 837 838 839 840 841 842 843 844 845 [846] 846 847 848 849 850 851 852 853 854 855 856 857 858 [859] 859 860 861 862 863 864 865 866 867 868 869 870 871 [872] 872 873 874 875 876 877 878 879 880 881 882 883 884 [885] 885 886 887 888 889 890 891 892 893 894 895 896 897 [898] 898 899 900 901 902 903 904 905 906 907 908 909 910 [911] 911 912 913 914 915 916 917 918 919 920 921 922 923 [924] 924 925 926 927 928 929 930 931 932 933 934 935 936 [937] 937 938 939 940 941 942 943 944 945 946 947 948 949 [950] 950 951 952 953 954 955 956 957 958 959 960 961 962 [963] 963 964 965 966 967 968 969 970 971 972 973 974 975 [976] 976 977 978 979 980 981 982 983 984 985 986 987 988 [989] 989 990 991 992 993 994 995 996 997 998 999 1000
-
Select the five first elements in
x
, assign them to the variablex1
and display themClick here for output
> x1 <- x[1:5] > x1 [1] 1 2 3 4 5
-
Select the five last elements in
x
, assign them to the variablex2
and display themClick here for output
> x2 <- x[996:1000] > x2 [1] 996 997 998 999 1000
-
Calculate the sum of
x1
andx2
, assign the result to the variablesum
and display itYou should get
996 997 998 999 1000
Click here for output
> sum <- x1 + x2 > sum [1] 997 999 1001 1003 1005
Here is a warning! You can take sums of vectors of different length and get a result. The shorter vector will be recycled until the end of the longer vector. If you’re lucky you get a warning but always check the results so you get what you expect.
Now that you have some practice, let's start analyzing some more complex data.
-
In your script, add a comment indicating we are using data frames
Click here for output
> # analyzing data frames (or any other comment you want)
-
Create the vectors
animal
,weight_g
,years
andcommon_pet
using the following code> # Defining variables > animal <- c("chicken", "anaconda", "gecko", "ladybug", "ant", "dog", "rat", "elephant") > weight_g <- c(2500, 250000, 70, 0.02, 0.005, 40000, 140, 4000000) > years <- c(5, 10, 15, 1, 1, 13, 2, 48) > common_pet <- c("y","n","n","n","n","y","y","n")
-
Create a data frame called
exp
with these vectors as columnsClick here for output
> # Creating data frame > exp <- data.frame(animal, weight_g, years, common_pet) > exp > animal weight_g years common_pet 1 chicken 2.5e+03 5 y 2 anaconda 2.5e+05 10 n 3 gecko 7.0e+01 15 n 4 ladybug 2.0e-02 1 n 5 ant 5.0e-03 1 n 6 dog 4.0e+04 13 y 7 rat 1.4e+02 2 y 8 elephant 4.0e+06 48 n
-
Use the following functions with
exp
as argument, to explore the data and answer the corresponding questions-
head()
-
tail()
Q2. What is the difference between
head()
andtail()
Click here for output
> # looking at the beginning of the file > head(exp) animal weight_g years common_pet 1 chicken 2.5e+03 5 y 2 anaconda 2.5e+05 10 n 3 gecko 7.0e+01 15 n 4 ladybug 2.0e-02 1 n 5 ant 5.0e-03 1 n 6 dog 4.0e+04 13 y > > # looking at the end of the file > tail(exp) animal weight_g years common_pet 3 gecko 7.0e+01 15 n 4 ladybug 2.0e-02 1 n 5 ant 5.0e-03 1 n 6 dog 4.0e+04 13 y 7 rat 1.4e+02 2 y 8 elephant 4.0e+06 48 n ANS = head displays the first rows, while tail displays the last rows
-
dim()
Q3. What information do you get with
dim()
Click here for output
> dim(exp) [1] 8 4 ANS = dim gives us the number of rows and columns
-
str()
Q4. Looking at the output from
str()
, which variables are numerical?Click here for output
> str(exp) 'data.frame': 8 obs. of 4 variables: $ animal : chr "chicken" "anaconda" "gecko" "ladybug" ... $ weight_g : num 2.5e+03 2.5e+05 7.0e+01 2.0e-02 5.0e-03 4.0e+04 1.4e+02 4.0e+06 $ years : num 5 10 15 1 1 13 2 48 $ common_pet: chr "y" "n" "n" "n" ...head(data) ANS = weight and years are numeric while animal and common_pet are strings or characters (char)
-
summary()
Q5. From the
summary()
results, how much does the heaviest animal weight? what is the mean life expectancy of our group of animals?Click here for output
> summary(exp) animal weight_g years Length:8 Min. : 0 Min. : 1.00 Class :character 1st Qu.: 53 1st Qu.: 1.75 Mode :character Median : 1320 Median : 7.50 Mean : 536589 Mean :11.88 3rd Qu.: 92500 3rd Qu.:13.50 Max. :4000000 Max. :48.00 common_pet Length:8 Class :character Mode :character ANS = the heaviest animal weights 4000000 gr while the average life expectancy is 11.88 years
-
Now, let's investigate how many animals that in average live at least 10 years, are considered not to be common pets. Once again, there are a lot of ways to answer this question, the proposed workflow below is just one way.
First, we would need to select those animals that live at least 10 years and then count which are not considered common pets.
-
Select the animals that in average live at least 10 years
-
Display the column called
years
usingexp$years
Click here for output
> # Selecting data > exp$years [1] 5 10 15 1 1 13 2 48
-
Query which elements (years) are equal to 10 years or more, using the
>=
operator
You will see a vector of logical operators (the answer of our comparison for each value)Click here for output
> # querying data > exp$years >= 10 [1] FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
-
Extract the indexes of the
TRUE
comparisons usingwhich()
with the expression used above as argumentClick here for output
> # extracting TRUE positions > which(exp$years >= 10) [1] 2 3 6 8
-
Save the result to a variable called
pos
Click here for output
> # saving the positions to a variable > pos <- which(exp$years >= 10)
-
Extract all the rows from
exp
that match the row numbers inpos
Remember that inside the square brackets you first tell which rows, then which columns you want to seeClick here for output
> # extracting rows belonging to animals that live at least 10 years > exp[pos,] animal weight_g years common_pet 2 anaconda 250000 10 n 3 gecko 70 15 n 6 dog 40000 13 y 8 elephant 4000000 48 n
-
Save the result to a variable called
exp_filt
Click here for output
> # saving results > exp_filt <- exp[pos,]
Q6. Which animals did you get?
Click here for output
> # displaying the animal column > exp_filt$animal [1] "anaconda" "gecko" "dog" "elephant"
-
-
Select and count animals considered not to be common pets
-
Display the column called
common_pet
fromexp_filt
Click here for output
> # displaying the common_pet category of the filtered data > exp_filt$common_pet [1] "n" "n" "y" "n"
-
Run
table()
with the expression used aboveClick here for output
> # creating a contingency table (counts of each value in the variable) > table(exp_filt$common_pet) n y 3 1
Q7. How many of these long living animals are considered not to be common pets?
Click here for output
3
-
R packages are a set of R functions, compiled code, and sample data in a standardized collection format that any user can install and apply to analyze data. In these exercises we will be using tidyverse
, if you google how to install it, you fill find this code:
> install.packages("tidyverse")
-
Go ahead and run it
Click here for output
> install.packages("tidyverse") WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding: https://cran.rstudio.com/bin/windows/Rtools/ Installing package into ‘C:/Users/Marcela/AppData/Local/R/win-library/4.2’ (as ‘lib’ is unspecified) trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/tidyverse_2.0.0.zip' Content type 'application/zip' length 430916 bytes (420 KB) downloaded 420 KB package ‘tidyverse’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\Marcela\AppData\Local\Temp\Rtmpcn9gYd\downloaded_packages
-
Load the package using
library()
Click here for output
> library("tidyverse") ── Attaching core tidyverse packages ────────────────────────────────────────────── tidyverse 2.0.0 ── ✔ dplyr 1.1.0 ✔ readr 2.1.4 ✔ forcats 1.0.0 ✔ stringr 1.5.0 ✔ ggplot2 3.4.2 ✔ tibble 3.2.0 ✔ lubridate 1.9.2 ✔ tidyr 1.3.0 ✔ purrr 1.0.1 ── Conflicts ──────────────────────────────────────────────────────────────── tidyverse_conflicts() ── ✖ dplyr::filter() masks stats::filter() ✖ dplyr::lag() masks stats::lag() ℹ Use the conflicted package to force all conflicts to become errors Warning messages: 1: package ‘tidyverse’ was built under R version 4.2.3 2: package ‘ggplot2’ was built under R version 4.2.3 3: package ‘tibble’ was built under R version 4.2.3 4: package ‘tidyr’ was built under R version 4.2.3 5: package ‘readr’ was built under R version 4.2.3 6: package ‘purrr’ was built under R version 4.2.3 7: package ‘stringr’ was built under R version 4.2.3 8: package ‘forcats’ was built under R version 4.2.3 9: package ‘lubridate’ was built under R version 4.2.3
Other packages we will be using are: readxl
and writexl
-
Install them as you did with
tidyverse
Click here for output
> install.packages("readxl") WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding: https://cran.rstudio.com/bin/windows/Rtools/ Installing package into ‘C:/Users/Marcela/AppData/Local/R/win-library/4.2’ (as ‘lib’ is unspecified) trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/readxl_1.4.3.zip' Content type 'application/zip' length 1183808 bytes (1.1 MB) downloaded 1.1 MB package ‘readxl’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\Marcela\AppData\Local\Temp\Rtmpcn9gYd\downloaded_packages > install.packages("writexl") WARNING: Rtools is required to build R packages but is not currently installed. Please download and install the appropriate version of Rtools before proceeding: https://cran.rstudio.com/bin/windows/Rtools/ Installing package into ‘C:/Users/Marcela/AppData/Local/R/win-library/4.2’ (as ‘lib’ is unspecified) trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/writexl_1.4.2.zip' Content type 'application/zip' length 190446 bytes (185 KB) downloaded 185 KB package ‘writexl’ successfully unpacked and MD5 sums checked The downloaded binary packages are in C:\Users\Marcela\AppData\Local\Temp\Rtmpcn9gYd\downloaded_packages
-
Load them using
library()
Click here for output
> library("readxl") Warning message: package ‘readxl’ was built under R version 4.2.3 > library("writexl") Warning message: package ‘writexl’ was built under R version 4.2.3
We will also be using EnhancedVolcano()
, however this package is from Bioconductor, so its installation is a little different. Run the following:
> if (!requireNamespace('BiocManager', quietly = TRUE))
> install.packages('BiocManager')
> BiocManager::install('EnhancedVolcano')
Click here for output
> if (!requireNamespace('BiocManager', quietly = TRUE))
> install.packages('BiocManager')
> BiocManager::install('EnhancedVolcano')
'getOption("repos")' replaces Bioconductor standard
repositories, see 'help("repositories", package =
"BiocManager")' for details.
Replacement repositories:
CRAN: https://cran.rstudio.com/
Bioconductor version 3.16 (BiocManager 1.30.20), R 4.2.2
(2022-10-31 ucrt)
Installation paths not writeable, unable to update
packages
path: C:/Program Files/R/R-4.2.2/library
packages:
boot, class, codetools, foreign, KernSmooth,
lattice, MASS, Matrix, mgcv, nlme, nnet, spatial,
survival
Old packages: 'askpass', 'BiocManager', 'broom',
'bslib', 'cli', 'cpp11', 'curl', 'dbplyr',
'DelayedArray', 'digest', 'dplyr', 'dqrng', 'DT',
'evaluate', 'fontawesome', 'fs', 'gargle', 'ggplot2',
'googledrive', 'googlesheets4', 'gtable', 'haven',
'htmltools', 'httr', 'jsonlite', 'knitr', 'labeling',
'lme4', 'lubridate', 'markdown', 'MatrixModels',
'minqa', 'mvtnorm', 'openssl', 'pkgload', 'polyclip',
'prettyunits', 'processx', 'promises', 'ps', 'purrr',
'quantreg', 'Rcpp', 'RcppArmadillo', 'RcppHNSW',
'rematch', 'reticulate', 'rlang', 'rmarkdown',
'rstudioapi', 'sass', 'sctransform', 'Seurat',
'SeuratObject', 'snakecase', 'spatstat.explore',
'spatstat.geom', 'spatstat.random', 'sys', 'testthat',
'tibble', 'tinytex', 'tzdb', 'uuid', 'V8', 'vctrs',
'viridisLite', 'waldo', 'withr', 'xfun', 'xml2', 'zoo'
Update all/some/none? [a/s/n]:
n
Warning message:
package(s) not installed when version(s) same as or
greater than current; use `force = TRUE` to
re-install: 'EnhancedVolcano'
And load it with
> library('EnhancedVolcano')
Click here for output
> library('EnhancedVolcano')
Loading required package: ggrepel
Warning message:
package ‘ggrepel’ was built under R version 4.2.3
Download expression_data.xlsx
from Canvas and save it in your Desktop (or in your working directory)
This file has proteomic data from 3 samples grown in low oxygen conditions and 3 control samples grown under normal oxygen conditions. We will analyze this dataset to identify proteins that are different between the low and the normal oxygen conditions.
-
Read the data using
read_xlsx()
and save it asdat
Click here for output
> # reading data > dat <- read_xlsx("expression_data.xlsx")
-
Use
dim()
andhead()
withdat
as argument to explore the dataClick here for output
> dim(dat) [1] 2870 8 > head(dat) # A tibble: 6 × 8 Accession Description Control_1 Control_2 Control_3 <chr> <chr> <dbl> <dbl> <dbl> 1 Q09666 Neuroblast dif… 1.03 0.997 0.966 2 Q15149 Plectin OS=Hom… 0.968 1.01 1.01 3 P21333 Filamin-A OS=H… 0.986 1.02 0.984 4 O75369 Filamin-B OS=H… 1.00 1.01 0.987 5 P78527 DNA-dependent … 0.942 1.04 1.01 6 P07900 Heat shock pro… 0.998 1.02 0.983 # ℹ 3 more variables: Hypoxia_1 <dbl>, Hypoxia_2 <dbl>, # Hypoxia_3 <dbl>
Q8. Each row is a protein, how many are we going to analyze?
Click here for output
2870 proteins
Filtering our data (selecting values above a threshold, genes that belong to the same pathway or targeting certain samples, etc) is one important step during data analysis. We will practice this during the practicals, showcasing several common strategies.
In this example, there are proteins without expression values (common in a proteomics experiment). These values (NA
) need to be removed so we can do the proper calculations.
-
Use the
drop_na
function as follows> # removing NA values > dat <- dat %>% drop_na
Q9. How many NA values did you remove? Hint: use
dim()
Click here for output
> dim(dat) 5
Now let's select the columns where the sample data is stored and save them in a new variable called expr_data
:
> # Selecting columns with expression data
> expr_data <- dat %>% select(Control_1:Hypoxia_3)
> head(expr_data)
# A tibble: 6 × 6
Control_1 Control_2 Control_3 Hypoxia_1 Hypoxia_2
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1.03 0.997 0.966 0.908 0.869
2 0.968 1.01 1.01 1.21 1.20
3 0.986 1.02 0.984 0.963 0.925
4 1.00 1.01 0.987 1.25 1.19
5 0.942 1.04 1.01 0.941 0.894
6 0.998 1.02 0.983 0.992 0.921
# ℹ 1 more variable: Hypoxia_3 <dbl>
Before any analysis, we need to understand the data so we can apply the correct statistical tests. To do this, we can generate simple summaries about our data and visualize them with different graphs. Let's try some.
A boxplot shows locality, spread and skewness of numerical data and R has a basic function for this.
-
Use
boxplot()
withexpr_data
as argumentClick here for output
> # plotting a boxplot > boxplot(expr_data)
Q10. What is plotted in the x and y-axis?
Click here for output
ANS = x = samples y = values, in this case expression data of the proteins
-
Add the
xlab
andylab
arguments, describing what is plottedClick here for output
> # adding labels to axes > boxplot(expr_data, ylab="ADD_Y_AXIS_TITLE_HERE", xlab="ADD_X_AXIS_TITLE_HERE")
-
Add the
col
argument selecting any color you want (here is a list of some colors)Click here for output
> # adding colors to data points > boxplot(expr_data, ylab="ADD_Y_AXIS_TITLE_HERE", xlab="ADD_X_AXIS_TITLE_HERE", col="ADD_COLOR_NAME_HERE")
-
Create a variable
sample_colors
with a total of 6 colors, the first three with the color you selected above and the last three with another colorClick here for output
> # color vector per sample category > sample_colors= rep(c("ADD_COLOR_FOR_GROUP_1_HERE","ADD_COLOR_FOR_GROUP_2_HERE"),each=3) > sample_colors [1] "red" "red" "red" "blue" "blue" "blue"
-
Use
sample_colors
as argument forcol
Click here for output
> # adding category colors > boxplot(expr_data, ylab="ADD_Y_AXIS_TITLE_HERE", xlab="ADD_X_AXIS_TITLE_HERE", col=sample_colors)
Q11. What do you conclude from the boxplot?
Click here for output
ANS = the distribution of the data is similar among samples of the same group, where the hypoxia samples have a higher variation
-
A histogram shows the distribution of the data points. This graph is widely used to assess if our data is normally distributed or not. If it is, then we can use the common parametric tests, like the t-test to evaluate if the changes we see when we compare to groups are statistically significant. If our data is not normally distributed, then we would need to do some kind of data transformation to approximate our data to a normal distribution. However if the distribution of the data is not normal, then we would need to use non-parametric tests to evaluate the significance of the changes we see.
-
Use
hist()
withunlist(expr_data)
as argument. We useunlist()
so we transform our data to a vector rather than a data.frame, which is the input type for an histogram.Click here for output
> # plotting a histogram > hist(unlist(expr_data))
-
Add the
main
argument, which prints out the title of the plotClick here for output
> # adding a title to the plot > hist(unlist(expr_data), main="ADD_PLOT_TITLE_HERE")
-
Add the
col
argument with a color of your choiceClick here for output
> # adding a custom color to the plot > hist(unlist(expr_data), main="ADD_PLOT_TITLE_HERE", col="ADD_COLOR_NAME_HERE")
-
Adjust the y-axis to 4000 using the
ylim
argumentClick here for output
> # adjusting the limits to be plotted > hist(unlist(expr_data), main="ADD_PLOT_TITLE_HERE", col="ADD_COLOR_NAME_HERE", ylim=c(0,4000))
Q12. Do you think our data is normally distributed? Here some examples of different distributions
Click here for output
ANS = slightly skewed
-
As shortly mentioned before, to meet statistical assumptions the data should be close to a normal distribution. To achieve this, we need to transform our data using an adequate technique, like log-ing the data, using the square-root or the reciprocal transformation, among so many others. As our data is a little skewed, we use the Log transformation.
-
Use
log2()
withexpr_data
as argument and save it in a variable calledlog_expr_data
Click here for output
> # log transformation > expr_data_log <- log2(expr_data)
-
Use the latest code you used to create a histogram, but now using
unlist(log_expr_data)
as data argument and modifying the graph title accordinglyClick here for output
> # plotting the log transformed data > hist(unlist(expr_data_log), main="ADD_PLOT_TITLE_HERE", col="ADD_COLOR_NAME_HERE", ylim=c(0,4000))
A PCA is a statistical procedure that summarizes the information in large data tables, like when we are working with NGS data. We won't get into details, however it is the most common tool to explore the variance in the data.
Since we have data per protein, and we want to check the difference per sample and not per gene (at least not yet), we need to transpose the data (changing the columns to rows)
-
Use
t()
withexpr_data_log
as data argument and save it asexpr_data_lot_t
Click here for output
> # transposing data > expr_data_log_t <- t(expr_data_log)
-
Display the first 4 rows and 4 columns of
expr_data_log
andexpr_data_log_t
to visualize the differencesClick here for output
> # data per gene/protein > expr_data_log[1:4,1:4] Control_1 Control_2 Control_3 Hypoxia_1 1 0.046840254 -0.00433459 -0.04990491 -0.1392358 2 -0.046921047 0.01863417 0.02005765 0.2714257 3 -0.020340448 0.02856915 -0.02326978 -0.0543923 4 0.004321606 0.02005765 -0.01887801 0.3207735 > # data per sample > expr_data_log_t[1:4,1:4] [,1] [,2] [,3] Control_1 0.04684025 -0.04692105 -0.02034045 Control_2 -0.00433459 0.01863417 0.02856915 Control_3 -0.04990491 0.02005765 -0.02326978 Hypoxia_1 -0.13923580 0.27142568 -0.05439230 [,4] Control_1 0.004321606 Control_2 0.020057652 Control_3 -0.018878010 Hypoxia_1 0.320773477
-
Run the following code to calculate the PCA
> # calculating the principal component
> pc <- prcomp(expr_data_log_t, center=TRUE, scale=TRUE)
-
Save the value of
pc$x
in a variable calledpc_comp
and display the resultClick here for output
> # displaying all PCAs > pc_comp <- pc$x > pc_comp Control_1 -21.78749 13.492513 -18.5562064 1.420378 Control_2 -23.78424 -6.919167 0.6504717 1.642475 Control_3 -23.94487 -3.534305 18.1821496 -3.415268 Hypoxia_1 19.43210 -21.433067 -9.3744625 4.139792 Hypoxia_2 24.95254 5.663831 -0.3380005 -16.567501 Hypoxia_3 25.13197 12.730195 9.4360480 12.780124 PC5 PC6 Control_1 -5.031875 1.238961e-14 Control_2 14.165258 2.897595e-14 Control_3 -8.777509 1.045301e-14 Hypoxia_1 -4.657209 -2.610542e-15 Hypoxia_2 2.786876 -3.384717e-14 Hypoxia_3 1.514459 -1.826534e-14
We have 6 principal components as we have 6 samples, and the numbers tells us the correlation of the items (samples) to each component. PC1 represents the component that explains the most variation in the data, if we plot it against PC2 (representing the second component that explains most variation in the data) we may be able to identify these components.
-
Use
plot()
withpr_comp
as argumentClick here for output
> # plotting the components > plot(pc_comp)
-
Adjust the color points using
col=sample_colors
Click here for output
> # adding colors per sample > plot(pc_comp, col=sample_colors)
-
Change the plotting symbol to the symbol you want, using the
pch
argument. Here you can find a list of the symbolsClick here for output
> # changing the plotting symbol > plot(pc_comp, col=sample_colors, pch=ADD_PLOTTING_SYMBOL_HERE)
-
Adjust the size of the plotting symbol to your liking by using the
cex
argumentClick here for output
> # adjusting the size of the plotting symbols > plot(pc_comp, col=sample_colors, pch=ADD_PLOTTING_SYMBOL_HERE, cex=ADD_PLOTTING_SIZE_HERE)
-
At this point, we can see that there samples form two clusters. If we add the sample names it will be easier to understand how and why they cluster.
-
Use the following code
> # plotting pc's > plot(pc_comp, col=sample_colors, pch=ADD_PLOTTING_SYMBOL_HERE, cex=ADD_PLOTTING_SIZE_HERE) > # adding sample names > text(pc_comp[1:3,1], pc_comp[1:3,2], colnames(expr_data_log)[1:3], col=sample_colors[1:3], pos=4) > text(pc_comp[4:6,1], pc_comp[4:6,2], colnames(expr_data_log)[4:6], col=sample_colors[4:6], pos=2)
Click here for output
Q13. Explain the code:
text(pc_comp[1:3,1], pc_comp[1:3,2], colnames(expr_data_log)[1:3], col=sample_colors[1:3], pos=4)
Click here for output
ANS = text() -> text draws the strings given in the vector labels at the coordinates given by x and y pc_comp[1:3,1] -> selects the PC1 coordinates of the control group Control_1 Control_2 Control_3 -21.78749 -23.78424 -23.94487 pc_comp[1:3,2] -> selects the PC2 coordinates of the control group Control_1 Control_2 Control_3 13.492513 -6.919167 -3.534305 head(expr_data_log[1:3]) -> selects the columns of the control group Control_1 Control_2 Control_3 1 0.046840254 -0.00433459 -0.04990491 2 -0.046921047 0.01863417 0.02005765 3 -0.020340448 0.02856915 -0.02326978 4 0.004321606 0.02005765 -0.01887801 5 -0.086201035 0.05797007 0.02005765 colnames(expr_data_log)[1:3] -> with colnames() we select the names of the control samples [1] "Control_1" "Control_2" "Control_3" sample_colors[1:3] -> selects the colors we set for the control group [1] "red" "red" "red" pos=4 -> a position specifier for the text. Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the specified (x,y) coordinates
-
Use
xlim=c(-30,30)
andylim=c(-30,20)
in theplot()
function to control the x and y-axisClick here for output
> # adjusting the printing limits > plot(pc_comp, col=sample_colors, pch=ADD_PLOTTING_SYMBOL_HERE, cex=ADD_PLOTTING_SIZE_HERE, xlim=c(-30,30), ylim=c(-30,20)) > # adding sample names > text(pc_comp[1:3,1], pc_comp[1:3,2], colnames(expr_data_log)[1:3], col=sample_colors[1:3], pos=4) > text(pc_comp[4:6,1], pc_comp[4:6,2], colnames(expr_data_log)[4:6], col=sample_colors[4:6], pos=2)
With this information, if you draw a vertical line across the x-axis, the samples can be easily clustered in 2 groups: Control
and Hypoxia
. So PC1
is explaining the difference in protein expression given the type of sample (which we usually are after!).
If you draw a horizontal line across the y-axis, you can see that we also have 2 groups, one including Control_1
, Hypoxia_3
and Hypoxia_2
and the other including Control_3
, Control_2
and Hypoxia_1
. It seems there is another factor affecting the expression of our proteins that was revcovered by PC2
. As we do not have more information about the samples (metadata) we can't determine the source of this grouping. Is it important? we hope not!
With this first exploratory analysis we checked that our replicates "behaved the same" (similar overall protein expression), so now it is time to compare our samples to identify proteins that are expressed at different levels depending the condition. In a clinical setting these proteins are called biomarkers
and they are quite important to detect diseases (as an example).
The process can be summarized in the following steps:
- Calculate the average expression per group, so we can compare the groups
- Calculate the ratio (or fold change) between groups, to see the difference in expression
- Calculate the statistical significance of these changes, to know which changes to trust
- Calculate the false positive rate, to compensate for so many statistical tests that will be done
-
Use the following code to create a new variable called
expr_data_out
> # calculating the mean for both groups > expr_data_out <- cbind(Accession=dat$Accession, expr_data, mean_Control = apply(expr_data[,1:3], 1, mean), mean_Hypoxia = apply(expr_data[,4:6], 1, mean)) > head(expr_data_out)
Click here for output
> head(expr_data_out) Accession Control_1 Control_2 Control_3 Hypoxia_1 1 Q09666 1.0328136 0.9969049 0.9661567 0.9075991 2 Q15149 0.9682882 1.0134108 1.0136614 1.2065772 3 P21333 0.9863230 1.0202332 0.9843270 0.9631440 4 O75369 1.0025070 1.0141024 0.9868860 1.2494849 5 P78527 0.9415689 1.0411724 1.0139032 0.9408542 6 P07900 0.9977023 1.0187355 0.9834650 0.9918571 Hypoxia_2 Hypoxia_3 mean_Control mean_Hypoxia 1 0.8687352 0.8796478 0.9986251 0.8853274 2 1.1955181 1.1898906 0.9984535 1.1973286 3 0.9253854 0.9130711 0.9969611 0.9338668 4 1.1944714 1.1596355 1.0011651 1.2011973 5 0.8937926 0.9129364 0.9988815 0.9158610 6 0.9207342 0.8771933 0.9999676 0.9299282
-
Compute the log2-fold change with the following code
> # calculating the mean for both groups > expr_data_out <- expr_data_out %>% mutate(log2FC = log2(mean_Hypoxia/mean_Control)) > head(expr_data_out)
Click here for output
> head(expr_data_out) Accession Control_1 Control_2 Control_3 Hypoxia_1 1 Q09666 1.0328136 0.9969049 0.9661567 0.9075991 2 Q15149 0.9682882 1.0134108 1.0136614 1.2065772 3 P21333 0.9863230 1.0202332 0.9843270 0.9631440 4 O75369 1.0025070 1.0141024 0.9868860 1.2494849 5 P78527 0.9415689 1.0411724 1.0139032 0.9408542 6 P07900 0.9977023 1.0187355 0.9834650 0.9918571 Hypoxia_2 Hypoxia_3 mean_Control mean_Hypoxia 1 0.8687352 0.8796478 0.9986251 0.8853274 2 1.1955181 1.1898906 0.9984535 1.1973286 3 0.9253854 0.9130711 0.9969611 0.9338668 4 1.1944714 1.1596355 1.0011651 1.2011973 5 0.8937926 0.9129364 0.9988815 0.9158610 6 0.9207342 0.8771933 0.9999676 0.9299282 log2FC 1 -0.17373212 2 0.26205210 3 -0.09432032 4 0.26279317 5 -0.12518487 6 -0.10476197
-
Use the following code to determine if the fold changes you just calculated are statistically significant
> # calculating the mean for both groups > expr_data_out <- cbind(expr_data_out, pvalue = apply(expr_data_log, 1, function(x) {t.test(x[1:3], x[4:6])$p.value})) > head(expr_data_out)
Click here for output
> head(expr_data_out) Accession Control_1 Control_2 Control_3 Hypoxia_1 1 Q09666 1.0328136 0.9969049 0.9661567 0.9075991 2 Q15149 0.9682882 1.0134108 1.0136614 1.2065772 3 P21333 0.9863230 1.0202332 0.9843270 0.9631440 4 O75369 1.0025070 1.0141024 0.9868860 1.2494849 5 P78527 0.9415689 1.0411724 1.0139032 0.9408542 6 P07900 0.9977023 1.0187355 0.9834650 0.9918571 Hypoxia_2 Hypoxia_3 mean_Control mean_Hypoxia 1 0.8687352 0.8796478 0.9986251 0.8853274 2 1.1955181 1.1898906 0.9984535 1.1973286 3 0.9253854 0.9130711 0.9969611 0.9338668 4 1.1944714 1.1596355 1.0011651 1.2011973 5 0.8937926 0.9129364 0.9988815 0.9158610 6 0.9207342 0.8771933 0.9999676 0.9299282 log2FC pvalue 1 -0.17373212 0.009422054 2 0.26205210 0.004481209 3 -0.09432032 0.034120750 4 0.26279317 0.007762774 5 -0.12518487 0.085029848 6 -0.10476197 0.167316618
When we are testing for potential differences between datasets, the incidence of false positives (in this case, peptides that are falsely called differentially expressed when they are not) will increase when we increase the amount of tests performed. It is therefore necessary to perform a multiple testing correction, which will adjust the individual p-value for each peptide while keeping the overall error rate (or false positive rate).
The p.adjust()
function harbours several methods to correct our pvalues. In this case we will use the Benjamini and Hochberg test, which deals with the false discover rate (FDR
): the expected proportion of false discoveries amongst the rejected null hypotheses.
-
Run the following:
> # calculating the mean for both groups > expr_data_out <- cbind(expr_data_out, fdr = p.adjust(expr_data_out$pvalue, method="BH")) > head(expr_data_out)
Click here for output
Accession Control_1 Control_2 Control_3 Hypoxia_1 1 Q09666 1.0328136 0.9969049 0.9661567 0.9075991 2 Q15149 0.9682882 1.0134108 1.0136614 1.2065772 3 P21333 0.9863230 1.0202332 0.9843270 0.9631440 4 O75369 1.0025070 1.0141024 0.9868860 1.2494849 5 P78527 0.9415689 1.0411724 1.0139032 0.9408542 6 P07900 0.9977023 1.0187355 0.9834650 0.9918571 Hypoxia_2 Hypoxia_3 mean_Control mean_Hypoxia 1 0.8687352 0.8796478 0.9986251 0.8853274 2 1.1955181 1.1898906 0.9984535 1.1973286 3 0.9253854 0.9130711 0.9969611 0.9338668 4 1.1944714 1.1596355 1.0011651 1.2011973 5 0.8937926 0.9129364 0.9988815 0.9158610 6 0.9207342 0.8771933 0.9999676 0.9299282 log2FC pvalue fdr 1 -0.17373212 0.009422054 0.05249245 2 0.26205210 0.004481209 0.03699903 3 -0.09432032 0.034120750 0.10469770 4 0.26279317 0.007762774 0.04793582 5 -0.12518487 0.085029848 0.18275358 6 -0.10476197 0.167316618 0.28171728
At this point it is recommendable to save all the results in a file. We can of course save the filtered results (see next section) however, some downstream tools require all the results to calculate background noise, like when we do a pathway analysis.
-
Use
write_xlsx()
to saveexpr_data_out
in a file namedresults.xls
Click here for output
# saving results to a file # write_xlsx(exprdata_out, "results.xlsx")
Now let's apply some filters to narrow down our candidate proteins.
-
Select a threshold for the FDR and save is as
alfa
-
Select a threshold for the fold change and save is as
FC
Click here for output
> # setting some thresholds > alfa=ADD_YOUR_THRESHOLD_HERE > FC=ADD_YOUR_THRESHOLD_HERE
Let's identify the statistically significant changes by running the following code:
> # calculating the number of statistically significant changes using FDR
> sum(expr_data_out$fdr < alfa)
[1] 529
> # calculating the number of statistically significant changes using p-value
> sum(expr_data_out$pvalue < alfa)
[1] 39
Q14. Why are there less statistically significant changes when we filter our data based on FDR?
-
Save the indexes of the proteins that passed our threshold in a variable called
sig
Click here for output
> # protein indexes that are statistically significant > sig <- expr_data_out$fdr < alfa
-
Use
sig
to display the name of the selected proteins fromexpr_data_out
Click here for output
> # displaying selected proteins > expr_data_out$Accession[sig]
A common visualization is a heatmap of the log values, where we can see the expression of the significant proteins across all the samples.
> # plotting expression data per sample
> heatdata <- as.matrix(expr_data_out[sig,2:7])
> rownames(heatdata) <- expr_data_out[sig,1] -> rownames(heatdata)
> heatmap(heatdata, margins = c(7,5))
Click here for output
A different visualization of the results is a volcano plot. This graph displays all the data and colors them based on different thresholds.
> # plotting a volcano plot
> EnhancedVolcano(exprdata_out, # data to plot
lab = exprdata_out$Accession, # labels (protein name)
x = "log2FC", # value to plot in the X-axis
y = "pvalue", # value to plot in the Y-axis
pCutoff = alfa, # cut off for the pvalue
FCcutoff = FC, # cut off for the fold change
title = "ADD_YOUR_TITLE_HERE", # Title of the plot
subtitle = NULL, # Remove subtitle to create more space for the plot
caption = NULL, # Remove caption to create more space for the plot
# (if you remove this line you will get the number of proteins plotted)
legendPosition = "top", # Position the legend on top of the plot
axisLabSize = 11, # Set font size for axis labels
labSize = 2.8, # Set font size for protein labels
xlim = c(-3,3), # Set x-axis limits to -3 and 3 so the plot is symmetric
ylim = c(0, 7)) # Set y-axis limits to 0 and 7
Click here for output
Q15. There are some proteins depicted as red dots, what does that mean? Are these proteins also plotted in the heatmap?
To showcase some other operations and plots, download the SraRunTable_rnaseq_CANVAS.xlsx
file from Canvas.
-
Read the file in a variable called
meta
Click here for output
> # reading the file > meta <- read_xlsx("SraRunTable_rnaseq_CANVAS.xlsx") > meta # A tibble: 696 × 34 `Sample group` Run `Assay Type` AvgSpotLen Bases <chr> <chr> <chr> <dbl> <chr> 1 A SRR34747… RNA-Seq 202 7616… 2 A SRR34747… RNA-Seq 202 7132… 3 A SRR34752… RNA-Seq 202 2660… 4 A SRR34752… RNA-Seq 202 2726… 5 B SRR34752… RNA-Seq 202 1125… 6 B SRR34747… RNA-Seq 202 7496… 7 B SRR34747… RNA-Seq 202 3498… 8 B SRR34747… RNA-Seq 202 2929… 9 B SRR34752… RNA-Seq 202 1122… 10 C SRR34747… RNA-Seq 202 9587… # ℹ 686 more rows # ℹ 29 more variables: BioProject <chr>, # BioSample <chr>, Bytes <dbl>, `Center Name` <chr>, # Consent <chr>, `DATASTORE filetype` <chr>, # `DATASTORE provider` <chr>, # `DATASTORE region` <chr>, Experiment <chr>, # `GEO_Accession (exp)` <chr>, Instrument <chr>, … # ℹ Use `print(n = ...)` to see more rows
-
Display the column names with
colnames()
usingmeta
as argumentClick here for output
> # displaying all columns > colnames(meta) [1] "Sample group" "Run" [3] "Assay Type" "AvgSpotLen" [5] "Bases" "BioProject" [7] "BioSample" "Bytes" [9] "Center Name" "Consent" [11] "DATASTORE filetype" "DATASTORE provider" [13] "DATASTORE region" "Experiment" [15] "GEO_Accession (exp)" "Instrument" [17] "LibraryLayout" "LibrarySelection" [19] "LibrarySource" "Organism" [21] "Platform" "ReleaseDate" [23] "Sample Name" "source_name" [25] "SRA Study" "AGE" [27] "gender" "Histology" [29] "ps_who" "Smoking" [31] "stage_tnm" "surgery_date" [33] "dead" "vital_date"
Let's summarize the data based on gender.
-
Display the different genders using the following code
> # displaying all columns > meta %>% distinct(gender)
Click here for output
> # displaying all columns > meta %>% distinct(gender) # A tibble: 3 × 1 gender <chr> 1 female 2 male 3 NA
-
Create a table with the total number of samples corresponding to the different genders, and save it as
gender
:> # grouping by gender > gender <- meta %>% group_by(gender) %>% summarise(samplesNo=n())
Click here for output
> # grouping by gender > gender <- meta %>% group_by(gender) %>% summarise(samplesNo=n()) # A tibble: 3 × 2 gender samplesNo <chr> <int> 1 female 325 2 male 275 3 NA 96
Although there are base graphics in R (as we have seen in previous examples), ggplot2
is quickly replacing them, as it is an scheme for data visualization which breaks up graphs into semantic components such as scales and layers. It is a little harder to learn, but once you do, your graphs will be spotless!
Let's create a pie chart using ggplot()
to visualize this information. Run:
> # creating pie chart
> gender %>%
ggplot(aes(x="", y=samplesNo, fill=gender)) +
geom_bar(stat="identity") +
coord_polar("y", start=0)
Click here for output
-
Add a title with this argument
labs(title="ADD_YOUR_TITLE_HERE")
Click here for output
> # adding labels > gender %>% ggplot(aes(x="", y=samplesNo, fill=gender)) + geom_bar(stat="identity") + coord_polar("y", start=0) + labs(title="Gender distribution")
-
Add
theme_void()
to make a cleaner plotClick here for output
> # prettifying the plot > gender %>% ggplot(aes(x="", y=samplesNo, fill=gender)) + geom_bar(stat="identity") + coord_polar("y", start=0) + labs(title="Gender distribution") + theme_void()
Q16. Make a pie chart using
Smoking
instead ofgender
Click here for output
# selecting and grouping the data based on the smoking column
smoking <- meta %>% group_by(Smoking) %>%
summarise(samplesNo=n())
# plotting
smoking %>%
ggplot(aes(x="", y=samplesNo, fill=Smoking)) +
geom_bar(stat="identity") +
coord_polar("y", start=0) +
labs(title="ADD_YOUR_TITLE_HERE") +
theme_void()
Let's create a subset of our data based on the Histology column, where we would like to show for the different histologies, the number of females
and males
.
First, we investigate the values of all histologies, run:
# extracting the number of categories
> table(meta$Histology)
1 2 3
209 318 73
There are 3 histologies, where 1 = squamos cell cancer, 2 = unspecified and 3 = Large cell/NOS. This information is found in the metadate of where the data was downloaded. Thus for each one of these categories, we need to extract gender
and create a list that we can then plot. Try to follow these code:
> # extracting gender for each category
> scc <- meta %>% filter(Histology %in% 1) %>% select(gender) %>% mutate (Sample="SCC")
> uns <- meta %>% filter(Histology %in% 2) %>% select(gender) %>% mutate (Sample="uns")
> nos <- meta %>% filter(Histology %in% 3) %>% select(gender) %>% mutate (Sample="NOS")
> # concatenating all the variables
> histology <- bind_rows(scc,uns,nos)
> # checking results
> table(histology)
Sample
gender NOS SCC uns
female 45 81 199
male 28 128 119
-
Create a barplot for
histology
Click here for output
> # creating a barplot > histology %>% ggplot(aes(x=Sample, fill=gender)) + geom_bar(stat="count", position="dodge") + labs(title="ADD_YOUR_TITLE_HERE") + theme_classic()
A venn diagram is great to show overlapping features. For instance, let's compare the Runs
from non Smokers
and individuals classified with metastasis
. Non smokers
can be found in the Smoking
column with a value of 3
, while metastasis
is in the stage_tnm
column annotated as 7
.
Run this code, line by line so you understand what data we are retrieving:
> # creating nonSmokers list
> nonSmokers <- unlist(meta %>% filter(Smoking %in% 3) %>% select(Run))
> # creating the metastasis list
> metastasis<- unlist(meta %>% filter(stage_tnm %in% 7) %>% select(Run))
> # comparing lists
> intersect(nonSmokers,metastasis)
Q17. How many
Runs
are shared betweenNon smokers
and individuals withmetastasis
?
Click here for output
[1] "SRR3475142" "SRR3475143" "SRR3475144"
-
Visualize the results with
ggvenn()
Click here for output
> # install and load ggvenn if not done already > # install.packages("ggvenn") > # library(ggvenn) > creating a venn diagram > ggvenn(list(nonSmokers=nonSmokers, metastasis=metastasis))
-
Modify the color of the plot by using the
fill_color
argumentClick here for output
> adjusting colors > ggvenn(list(nonSmokers=nonSmokers, metastasis=metastasis), fill_color = c("ADD_YOUR_COLOR_HERE", "ADD_YOUR_COLOR_HERE"))
Let's look at the age
distribution and generate a histogram. Run the following examples:
> # plotting a histogram for age
> ggplot(meta, aes(x=AGE)) + geom_histogram()
Click here for output
> # modifying binwdth
> ggplot(data, aes(x=AGE)) + geom_histogram(binwidth = ADD_A_BINWIDTH_HERE)
Click here for output
Q18. What is
binwidth
?
ANS = The number of bars of the histogram
> # plotting a histogram for age
> ggplot(meta, aes(x=AGE)) + geom_histogram(binwidth = 5, fill="ADD_COLOR_HERE", color="ADD_ANOTHER_COLOR_HERE")
Click here for output
> # plotting a histogram for age
> ggplot(meta, aes(x=AGE, fill=gender)) + geom_histogram()
Click here for output
Q19. What can you conclude from this graph?
Created by Marcela Dávila with material from Maria Nethander, 2023.