Computing branch support metrics - amkozlov/raxml-ng GitHub Wiki
RBS: Rapid bootstrap (RAxML8-style)
Infer 100 rapid bootstrap replicate trees:
raxml-ng --bootstrap --msa A7.fa --model LG+G -bs-metric rbs --bs-trees 100
Run a regular ML tree search and estimate support on the best-found ML tree:
raxml-ng --all --msa A7.fa --model LG+G --bs-metric rbs
Reference: Stamatakis et al. 2008
EBG: Educated Bootstrap Guesser
Estimate branch support for a reference tree without pre-optimized model and/or branch lengths (e.g. obtained with parsimony, FastTree):
raxml-ng --ebg --msa A7.fa --model LG+G --tree reftree.nw
Estimate branch support for an existing tree with pre-optimized model parameters (e.g. from a previous raxml-ng run, similar to Python version of EBG):
raxml-ng --ebg --msa A7.fa --model A7.bestModel --tree A7.bestTree --opt-model off --opt-branches off
Run a regular ML tree search and estimate support on the best-found ML tree:
raxml-ng --all --msa A7.fa --model LG+G -bs-metric ebg
NOTE: raxml-ng integrates the lightweight version of EBG regressor with a reduced set of features. It only reports median predicted branch support. We think that this is a good tradeoff between speed, implementation complexity, and ease of result interpretation. However, if you need advanced features such as classifier, lower bound prediction, and uncertainty estimation, please use full-featured version of EBG: https://github.com/wiegertj/EBG
Reference: Wiegert et al. 2024
SH-aLRT
Estimate branch support for an existing tree, with 1000 replicates:
raxml-ng --sh --msa A7.fa --model LG+G --tree A7.bestTree --sh-reps 1000
Run a regular ML tree search and estimate support on the best-found ML tree:
raxml-ng --all --msa A7.fa --model LG+G --bs-metric sh
Reference: Guindon et al. 2010
TBE: Transfer Bootstrap Expectation
Compute transfer bootstrap from an existing set of replicate trees:
raxml-ng --support --tree bestML.tree --bs-trees bootstraps.tree --bs-metric TBE
Run a regular ML tree search and estimate support on the best-found ML tree:
raxml-ng --all --msa ali.fa --model GTR+G --bs-metric tbe
Reference: Lemoine et al., Nature 2018
PS/PBS: Parsimony (Bootstrap) Support
Generate 500 parsimony bootstrap replicate trees:
raxml-ng --bootstrap --msa A7.fa --model LG+G -bs-metric pbs --bs-trees 500
Run a regular ML tree search and estimate support on the best-found ML tree:
raxml-ng --all --msa A7.fa --model LG+G -bs-metric ps,pbs
IC/TC: Internode certainty
- All-in-one: run ML tree-inference, infer bootstrap replicate trees, and compute IC/TC scores as well as standard Felsenstein bootstap (FBP) supports:
raxml-ng --all --msa ali.phy --model GTR+G --bs-metric fbp,ic1 --prefix ictc_ALL
- Compute IC/TC and ICA/TCA scores for a given ML topology and a set of replicate trees:
raxml-ng --support --tree ML.tree --bs-trees BSREP100.tree --bs-metric ic1,ica --prefix ictc_ML
- Compute ICA supports on a majority-rule (MR) consensus tree:
raxml-ng --support --tree cons:MR --bs-trees BSREP100.tree --bs-metric ica --prefix ictc_MR
For more details on IC/TC please read: https://doi.org/10.1093/molbev/msu061