Publications - adda-team/adda GitHub Wiki

Below we list journal papers that use results of simulations using ADDA, either directly or through a previously published database (lookup table). Such databases are denoted by "(DB)" below. A paper is included in the list if it performs ADDA simulations, mentions that it uses previous ADDA results, or uses one of these databases (even if neither ADDA nor DDA is mentioned). However, those (review) papers, which only mention ADDA (but not results), are not included. The papers are sorted by authors' last names within each year; the latter are listed in reverse chronological order. The list is updated in bulk approximately once a year (but several recent years are currently missing). If you know a missing paper from previous years, please create an issue. Similar (but more recent) list of papers with full bibliographic data can be found in Zotero library.

Based on these publications ADDA (or its results) has been used in 34 countries, as shown in the following map.

ADDA usage around the world

2016 (70)

  1. Alpeggiani F., D’Agostino S., Sanvitto D., and Gerace D. Visible quantum plasmonics from metallic nanodimers, Sci. Rep. 6, 34772 (2016).
  2. Arif K.M. Discrete dipole approximation simulation of bead enhanced diffraction grating biosensor, J. Quant. Spectrosc. Radiat. Transfer 179, 105–111 (2016).
  3. Bani Shahabadi M., Huang Y., Garand L., Heilliette S., and Yang P. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases, J. Adv. Model. Earth Syst. 8, 1453–1467 (2016).
  4. Barker H.W., Cole J.N.S., Li J., and von Salzen K. A parametrization of 3-D subgrid-scale clouds for conventional GCMs: Assessment using A-Train satellite data and solar radiative transfer characteristics, J. Adv. Model. Earth Syst. 8, 566–597 (2016).
  5. Bi L. and Yang P. Tunneling effects in electromagnetic wave scattering by nonspherical particles: A comparison of the Debye series and physical-geometric optics approximations, J. Quant. Spectrosc. Radiat. Transfer 178, 93–107 (2016).
  6. Carattino A., Keizer V.I.P., Schaaf M.J.M., and Orrit M. Background suppression in imaging gold nanorods through detection of anti-Stokes emission, Biophys. J. 111, 2492–2499 (2016).
  7. Carattino A., Khatua S., and Orrit M. In situ tuning of gold nanorod plasmon through oxidative cyanide etching, Phys. Chem. Chem. Phys. 18, 15619–15624 (2016).
  8. Chang K.-E., Hsiao T.-C., Hsu N.C., Lin N.-H., Wang S.-H., Liu G.-R., Liu C.-Y., and Lin T.-H. Mixing weight determination for retrieving optical properties of polluted dust with MODIS and AERONET data, Environ. Res. Lett. 11, 085002 (2016).
  9. Collier C.T., Hesse E., Taylor L., Ulanowski Z., Penttilä A., and Nousiainen T. Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results, J. Quant. Spectrosc. Radiat. Transfer 182, 225–239 (2016).
  10. Cox C.J., Rowe P.M., Neshyba S.P., and Walden V.P. A synthetic data set of high-spectral-resolution infrared spectra for the Arctic atmosphere, Earth Syst. Sci. Data 8, 199–211 (2016).
  11. Ding J., Yang P., Holz R.E., Platnick S., Meyer K.G., Vaughan M.A., Hu Y., and King M.D. Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data, Opt. Express 24, 620–636 (2016).
  12. Emde C., Buras-Schnell R., Kylling A., Mayer B., Gasteiger J., Hamann U., Kylling J., Richter B., Pause C., et al. The libRadtran software package for radiative transfer calculations (version 2.0.1), Geosci. Model Dev. 9, 1647–1672 (2016).
  13. Finger F., Werner F., Klingebiel M., Ehrlich A., Jäkel E., Voigt M., Borrmann S., Spichtinger P., and Wendisch M. Spectral optical layer properties of cirrus from collocated airborne measurements and simulations, Atmos. Chem. Phys. 16, 7681–7693 (2016).
  14. Fomin B. and Falaleeva V. Spectra of polarized thermal radiation in a cloudy atmosphere: Line-by-Line and Monte Carlo model for passive remote sensing of cirrus and polar clouds, J. Quant. Spectrosc. Radiat. Transfer 177, 301–317 (2016).
  15. Fridlind A.M., Atlas R., van Diedenhoven B., Um J., McFarquhar G.M., Ackerman A.S., Moyer E.J., and Lawson R.P. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model, Atmos. Chem. Phys. 16, 7251–7283 (2016).
  16. Geffrin J.-M., Chamtouri M., Merchiers O., Tortel H., Litman A., Bailly J.-S., Lacroix B., Francoeur M., and Vaillon R. The Surface Wave Scattering-Microwave Scanner (SWS-MS), J. Quant. Spectrosc. Radiat. Transfer 168, 1–9 (2016).
  17. (DB) Gilev K.V., Yurkin M.A., Chernyshova E.S., Strokotov D.I., Chernyshev A.V., and Maltsev V.P. Mature red blood cells: From optical model to inverse light-scattering problem, Biomed. Opt. Express 7, 1305–1310 (2016).
  18. Hashino T., Satoh M., Hagihara Y., Kato S., Kubota T., Matsui T., Nasuno T., Okamoto H., and Sekiguchi M. Evaluating Arctic cloud radiative effects simulated by NICAM with A-train, J. Geophys. Res. Atmos. 121, 7041–7063 (2016).
  19. Heffernan B.M., Heinson Y.W., Maughan J.B., Chakrabarti A., and Sorensen C.M. Backscattering measurements of micron-sized spherical particles, Appl. Opt. 55, 3214–3218 (2016).
  20. Heinson W.R. and Chakrabarty R.K. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths, Opt. Lett. 41, 808–811 (2016).
  21. Heinson Y.W., Maughan J.B., Ding J., Chakrabarti A., Yang P., and Sorensen C.M. Q-space analysis of light scattering by ice crystals, J. Quant. Spectrosc. Radiat. Transfer 185, 86–94 (2016).
  22. Hermann M., Weigelt A., Assmann D., Pfeifer S., Müller T., Conrath T., Voigtländer J., Heintzenberg J., Wiedensohler A., et al. An optical particle size spectrometer for aircraft-borne measurements in IAGOS-CARIBIC, Atmos. Meas. Tech. 9, 2179–2194 (2016).
  23. Hioki S., Yang P., Baum B.A., Platnick S., Meyer K.G., King M.D., and Riedi J. Degree of ice particle surface roughness inferred from polarimetric observations, Atmos. Chem. Phys. 16, 7545–7558 (2016).
  24. Hioki S., Yang P., Kattawar G.W., and Hu Y. Truncation of the scattering phase matrix for vector radiative transfer simulation, J. Quant. Spectrosc. Radiat. Transfer 183, 70–77 (2016).
  25. Holz R.E., Platnick S., Meyer K., Vaughan M., Heidinger A., Yang P., Wind G., Dutcher S., Ackerman S., et al. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals, Atmos. Chem. Phys. 16, 5075–5090 (2016).
  26. Iwabuchi H., Saito M., Tokoro Y., Putri N.S., and Sekiguchi M. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements, Prog. in Earth and Planet. Sci. 3, 32 (2016).
  27. Järvinen E., Kemppinen O., Nousiainen T., Kociok T., Möhler O., Leisner T., and Schnaiter M. Laboratory investigations of mineral dust near-backscattering depolarization ratios, J. Quant. Spectrosc. Radiat. Transfer 178, 192–208 (2016).
  28. Kneifel S., Kollias P., Battaglia A., Leinonen J., Maahn M., Kalesse H., and Tridon F. First observations of triple-frequency radar Doppler spectra in snowfall: Interpretation and applications, Geophys. Res. Lett. 43, 2015GL067618 (2016).
  29. Konokhova A.I., Chernova D.N., Moskalensky A.E., Strokotov D.I., Yurkin M.A., Chernyshev A.V., and Maltsev V.P. Super-resolved calibration-free flow cytometric characterization of platelets and cell-derived microparticles in platelet-rich plasma, Cytometry A 89, 159–168 (2016).
  30. Konokhova A.I., Chernova D.N., Strokotov D.I., Karpenko A.A., Chernyshev A.V., Maltsev V.P., and Yurkin M.A. Light-scattering gating and characterization of plasma microparticles, J. Biomed. Opt. 21, 115003 (2016).
  31. Kugeiko M.M. and Smunev D.A. Effect of model type on the accuracy of polarization and nephelometric measurements of red-blood-cell volume, J. Appl. Spectrosc. 83, 204–211 (2016).
  32. Kugeiko M.M. and Smunev D.A. Method of determining the surface area and volume of erythrocytes from nephelometric measurements, J. Opt. Technol. 83, 269–274 (2016).
  33. Kugeiko M.M. and Smunev D.A. Method for determining erythrocyte surface area by polarization and nephelometric measurements, J. Appl. Spectrosc. 82, 985–992 (2016).
  34. Lefèvre C., Pagani L., Min M., Poteet C., and Whittet D. On the importance of scattering at 8 μm: Brighter than you think, Astron. Astrophys. 585, L4 (2016).
  35. Letu H., Ishimoto H., Riedi J., Nakajima T.Y., C.-Labonnote L., Baran A.J., Nagao T.M., and Sekiguchi M. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission, Atmos. Chem. Phys. 16, 12287–12303 (2016).
  36. (DB) Litvinenko A.L., Moskalensky A.E., Karmadonova N.A., Nekrasov V.M., Strokotov D.I., Konokhova A.I., Yurkin M.A., Pokushalov E.A., Chernyshev A.V., et al. Fluorescence-free flow cytometry for measurement of shape index distribution of resting, partially activated, and fully activated platelets, Cytometry A 89, 1010–1016 (2016).
  37. Liu X., Yang Q., Li H., Jin Z., Wu W., Kizer S., Zhou D.K., and Yang P. Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region, Appl. Opt. 55, 8236–8247 (2016).
  38. (DB) Lu Y., Jiang Z., Aydin K., Verlinde J., Clothiaux E.E., and Botta G. A polarimetric scattering database for non-spherical ice particles at microwave wavelengths, Atmos. Meas. Tech. 9, 5119–5134 (2016).
  39. Marchant B., Platnick S., Meyer K., Arnold G.T., and Riedi J. MODIS Collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP, Atmos. Meas. Tech. 9, 1587–1599 (2016).
  40. Maughan J.B., Sorensen C.M., and Chakrabarti A. Q-space analysis of light scattering by Gaussian Random Spheres, J. Quant. Spectrosc. Radiat. Transfer 174, 14–21 (2016).
  41. Meyer K., Platnick S., Arnold G.T., Holz R.E., Veglio P., Yorks J., and Wang C. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band, Atmos. Meas. Tech. 9, 1743–1753 (2016).
  42. Meyer K., Yang Y., and Platnick S. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech. 9, 1785–1797 (2016).
  43. Min M., Rab Ch., Woitke P., Dominik C., and Ménard F. Multiwavelength optical properties of compact dust aggregates in protoplanetary disks, Astron. Astrophys. 585, A13 (2016).
  44. Mishchenko M.I., Dlugach J.M., Yurkin M.A., Bi L., Cairns B., Liu L., Panetta R.L., Travis L.D., Yang P., et al. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media, Phys. Rep. 632, 1–75 (2016).
  45. Okamura R. and Iwabuchi H. Physical interpretation of gray cloud observed from airplanes, Appl. Opt. 55, 5761–5765 (2016).
  46. Potenza M.A.C., Albani S., Delmonte B., Villa S., Sanvito T., Paroli B., Pullia A., Baccolo G., Mahowald N., et al. Shape and size constraints on dust optical properties from the Dome C ice core, Antarctica, Sci. Rep. 6, 28162 (2016).
  47. Rowe P.M., Cox C.J., and Walden V.P. Toward autonomous surface-based infrared remote sensing of polar clouds: cloud-height retrievals, Atmos. Meas. Tech. 9, 3641–3659 (2016).
  48. Sayer A.M., Hsu N.C., Bettenhausen C., Lee J., Redemann J., Schmid B., and Shinozuka Y. Extending “Deep Blue” aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies, J. Geophys. Res. Atmos. 121, 4830–4854 (2016).
  49. Schnaiter M., Järvinen E., Vochezer P., Abdelmonem A., Wagner R., Jourdan O., Mioche G., Shcherbakov V.N., Schmitt C.G., et al. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds, Atmos. Chem. Phys. 16, 5091–5110 (2016).
  50. Sun B., Kattawar G.W., Yang P., Twardowski M.S., and Sullivan J.M. Simulation of the scattering properties of a chain-forming triangular prism oceanic diatom, J. Quant. Spectrosc. Radiat. Transfer 178, 390–399 (2016).
  51. Thompson D.R., McCubbin I., Gao B.C., Green R.O., Matthews A.A., Mei F., Meyer K.G., Platnick S., Schmid B., et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy, J. Geophys. Res. Atmos. 121, 9174–9190 (2016).
  52. Vartia O.S., Ylä-Oijala P., Markkanen J., Puupponen S., Seppälä A., Sihvola A., and Ala-Nissila T. On the applicability of discrete dipole approximation for plasmonic particles, J. Quant. Spectrosc. Radiat. Transfer 169, 23–35 (2016).
  53. Villa S., Sanvito T., Paroli B., Pullia A., Delmonte B., and Potenza M.A.C. Measuring shape and size of micrometric particles from the analysis of the forward scattered field, J. Appl. Phys. 119, 224901 (2016).
  54. Virkki A. and Muinonen K. Radar scattering by planetary surfaces modeled with laboratory-characterized particles, Icarus 269, 38–49 (2016).
  55. Wang A., Garmann R.F., and Manoharan V.N. Tracking E. coli runs and tumbles with scattering solutions and digital holographic microscopy, Opt. Express 24, 23719–23725 (2016).
  56. Wang B.X. and Zhao C.Y. Predicting radiative transport properties of plasma sprayed porous ceramics, J. Appl. Phys. 119, 125110 (2016).
  57. Wang C., Platnick S., Zhang Z., Meyer K., Wind G., and Yang P. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation, J. Geophys. Res. Atmos. 121, 5827–5845 (2016).
  58. Wang C., Platnick S., Zhang Z., Meyer K., and Yang P. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content, J. Geophys. Res. Atmos. 121, 5809–5826 (2016).
  59. Wang X., Gao J., Fan Z., and Roberts N.W. An analytical model for the celestial distribution of polarized light, accounting for polarization singularities, wavelength and atmospheric turbidity, J. Opt. 18, 065601 (2016).
  60. Wind G., da Silva A.M., Norris P.M., Platnick S., Mattoo S., and Levy R.C. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters – Part 2: Aerosols, Geosci. Model Dev. 9, 2377–2389 (2016).
  61. Wu Y., Cheng T., Zheng L., and Chen H. Models for the optical simulations of fractal aggregated soot particles thinly coated with non-absorbing aerosols, J. Quant. Spectrosc. Radiat. Transfer 182, 1–11 (2016).
  62. Wu Y., Cheng T., Zheng L., and Chen H. Effect of morphology on the optical properties of soot aggregated with spheroidal monomers, J. Quant. Spectrosc. Radiat. Transfer 168, 158–169 (2016).
  63. Yi B., Yang P., Liu Q., van Delst P., Boukabara S.-A., and Weng F. Improvements on the ice cloud modeling capabilities of the Community Radiative Transfer Model, J. Geophys. Res. Atmos. 121, 13,577-13,590 (2016).
  64. Yurchuk Y.S., Ustinov V.D., Nikitin S.Y., and Priezzhev A.V. Scattering of a laser beam on a wet blood smear and measurement of red cell size distribution, Quant. Electron. 46, 515 (2016).
  65. Zhang F. and Li J. A note on double Henyey–Greenstein phase function, J. Quant. Spectrosc. Radiat. Transfer 184, 40–43 (2016).
  66. Zhang J., Feng Y., Jiang W., Lu J.Q., Sa Y., Ding J., and Hu X.-H. Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus, Opt. Express 24, 366–377 (2016).
  67. Zhang J., Wang G., Feng Y., and Sa Y. Comparison of contourlet transform and gray level co-occurrence matrix for analyzing cell-scattered patterns, J. Biomed. Opt. 21, 086013–086013 (2016).
  68. Zhang J.-B., Ding L., Wang Y.-P., Zhang L., Wu J.-L., Zheng H.-Y., and Fang L. Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing, Chinese Phys. B 25, 034201 (2016).
  69. Zinner T., Hausmann P., Ewald F., Bugliaro L., Emde C., and Mayer B. Ground-based imaging remote sensing of ice clouds: uncertainties caused by sensor, method and atmosphere, Atmos. Meas. Tech. 9, 4615–4632 (2016).
  70. Zouros G.P. and Kokkorakis G.C. Electromagnetic scattering on inhomogeneous gyroelectric bodies of revolution, IEEE Trans. Antennas Propag. 64, 281–286 (2016).

2015 (55)

  1. Barker H.W., Cole J.N.S., Domenech C., Shephard M.W., Sioris C.E., Tornow F., and Wehr T. Assessing the quality of active–passive satellite retrievals using broad-band radiances, Quart. J. Royal Meteor. Soc. 141, 1294–1305 (2015).
  2. Barker H.W., Cole J.N.S., and Li J. Application of a Monte Carlo solar radiative transfer modelin the McICA framework, Quart. J. Royal Meteor. Soc. 141, 3130–3139 (2015).
  3. Barker H.W., Cole J.N.S., Li J., Yi B., and Yang P. Estimation of errors in two-stream approximations of the solar radiative transfer equation for cloudy-sky conditions, J. Atmos. Sci. 72, 4053–4074 (2015).
  4. Bi L. and Yang P. Impact of calcification state on the inherent optical properties of Emiliania huxleyi coccoliths and coccolithophores, J. Quant. Spectrosc. Radiat. Transfer 155, 10–21 (2015).
  5. Brzobohatý O., Šiler M., Trojek J., Chvátal L., Karásek V., Paták A., Pokorná Z., Mika F., and Zemánek P. Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers, Sci. Rep. 5 (2015).
  6. Brzobohatý O., Siler M., Trojek J., Chvátal L., Karásek V., and Zemánek P. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters, Opt. Express 23, 8179–8189 (2015).
  7. Buchard V., da Silva A.M., Colarco P.R., Darmenov A., Randles C.A., Govindaraju R., Torres O., Campbell J., and Spurr R. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys. 15, 5743–5760 (2015).
  8. Chobanyan E., Sekeljic N.J., Manic A.B., Ilic M.M., Bringi V.N., and Notaros B.M. Efficient and accurate computational electromagnetics approach to precipitation particle scattering analysis based on higher-order method of moments integral equation modeling, J. Atmos. Oceanic Technol. 32, 1745–1758 (2015).
  9. D’Agostino S., Della Sala F., and Andreani L.C. Perturbations of dipole decay dynamics induced by plasmonic nano-antennas – a study within the discrete dipole approximation, Nanomater. Nanotechnol. 5, 11 (2015).
  10. Dannhauser D., Rossi D., Causa F., Memmolo P., Finizio A., Wriedt T., Hellmers J., Eremin Y., Ferraro P., et al. Optical signature of erythrocytes by light scattering in microfluidic flows, Lab Chip 15, 3278–3285 (2015).
  11. Goldmann M., Miguel-Sánchez J., West A.H.C., Yoder B.L., and Signorell R. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles, J. Chem. Phys. 142, 224304 (2015).
  12. Hannel M., Middleton C., and Grier D.G. Holographic characterization of imperfect colloidal spheres, Appl. Phys. Lett. 107, 141905 (2015).
  13. Heidinger A.K., Li Y., Baum B.A., Holz R.E., Platnick S., and Yang P. Retrieval of cirrus cloud optical depth under day and night conditions from MODIS Collection 6 cloud property data, Remote Sens. 7, 7257–7271 (2015).
  14. Hesse E., Collier C.T., Penttilä A., Nousiainen T., Ulanowski Z., and Kaye P.H. Modelling light scattering by absorbing smooth and slightly rough facetted particles, J. Quant. Spectrosc. Radiat. Transfer 157, 71–80 (2015).
  15. Hong G. and Minnis P. Effects of spherical inclusions on scattering properties of small ice cloud particles, J. Geophys. Res. Atmos. 120, 2951–2969 (2015).
  16. Huang X., Yang P., Kattawar G., and Liou K.-N. Effect of mineral dust aerosol aspect ratio on polarized reflectance, J. Quant. Spectrosc. Radiat. Transfer 151, 97–109 (2015).
  17. Jurányi Z., Burtscher H., Loepfe M., Nenkov M., and Weingartner E. Dual-wavelength light-scattering technique for selective detection of volcanic ash particles in the presence of water droplets, Atmos. Meas. Tech. 8, 5213–5222 (2015).
  18. Kemppinen O., Nousiainen T., and Jeong G.Y. Effects of dust particle internal structure on light scattering, Atmos. Chem. Phys. 15, 12011–12027 (2015).
  19. Kemppinen O., Nousiainen T., and Lindqvist H. The impact of surface roughness on scattering by realistically shaped wavelength-scale dust particles, J. Quant. Spectrosc. Radiat. Transfer 150, 55–67 (2015).
  20. Kemppinen O., Nousiainen T., Merikallio S., and Raisanen P. Retrieving microphysical properties of dust-like particles using ellipsoids: the case of refractive index, Atmos. Chem. Phys. 15, 11117–11132 (2015).
  21. Kim K.-H. and Yurkin M.A. Time-domain discrete-dipole approximation for simulation of temporal response of plasmonic nanoparticles, Opt. Express 23, 15555–15564 (2015).
  22. Lee J., Hsu N.C., Bettenhausen C., Sayer A.M., Seftor C.J., and Jeong M.-J. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations, J. Geophys. Res. Atmos. 120, 8372–8388 (2015).
  23. Leinonen J. and Moisseev D. What do triple-frequency radar signatures reveal about aggregate snowflakes?, J. Geophys. Res. Atmos. 120, 229–239 (2015).
  24. (DB) Leinonen J. and Szyrmer W. Radar signatures of snowflake riming: A modeling study, Earth Space Sci. 2, 346–358 (2015).
  25. Li J., Barker H., Yang P., and Yi B. On the aerosol and cloud phase function expansion moments for radiative transfer simulations, J. Geophys. Res. Atmos. 120, 12,128-12,142 (2015).
  26. Liu C., Yang P., Nasiri S.L., Platnick S., Meyer K.G., Wang C., and Ding S. A fast Visible Infrared Imaging Radiometer Suite simulator for cloudy atmospheres, J. Geophys. Res. Atmos. 120, 240–255 (2015).
  27. Lyamkina A.A. and Moshchenko S.P. Influence of localized surface plasmon in a lens-shaped metal cluster on the decay dynamics of a point-dipole emitter, J. Quant. Spectrosc. Radiat. Transfer 156, 12–16 (2015).
  28. Maes D., Vorontsova M.A., Potenza M.A.C., Sanvito T., Sleutel M., Giglio M., and Vekilov P.G. Do protein crystals nucleate within dense liquid clusters?, Acta Crystallogr. F 71, 815–822 (2015).
  29. Malinka A.V. Analytical expressions for characteristics of light scattering by arbitrarily shaped particles in the WKB approximation, J. Opt. Soc. Am. A 32, 1344–1351 (2015).
  30. Merikallio S., Muñoz O., Sundström A.-M., Virtanen T.H., Horttanainen M., Leeuw G. de, and Nousiainen T. Optical modeling of volcanic ash particles using ellipsoids, J. Geophys. Res. Atmos. 120, 4102–4116 (2015).
  31. Milstein A.B. and Richardson J.M. Comparison of models and measurements of angle-resolved scatter from irregular aerosols, J. Quant. Spectrosc. Radiat. Transfer 151, 110–122 (2015).
  32. Nowottnick E.P., Colarco P.R., Welton E.J., and da Silva A. Use of the CALIOP vertical feature mask for evaluating global aerosol models, Atmos. Meas. Tech. 8, 3647–3669 (2015).
  33. Oue M., Kumjian M.R., Lu Y., Jiang Z., Clothiaux E.E., Verlinde J., and Aydin K. X-band polarimetric and Ka-band doppler spectral radar observations of a graupel-producing arctic mixed-phase cloud, J. Appl. Meteor. Climatol. 54, 1335–1351 (2015).
  34. Oue M., Kumjian M.R., Lu Y., Verlinde J., Aydin K., and Clothiaux E.E. Linear depolarization ratios of columnar ice crystals in a deep precipitating system over the arctic observed by zenith-pointing Ka-band doppler radar, J. Appl. Meteor. Climatol. 54, 1060–1068 (2015).
  35. Pirazzini R., Räisänen P., Vihma T., Johansson M., and Tastula E.-M. Measurements and modelling of snow particle size and shortwave infrared albedo over a melting Antarctic ice sheet, Cryosphere 9, 2357–2381 (2015).
  36. Potenza M.A.C., Sanvito T., Argentiere S., Cella C., Paroli B., Lenardi C., and Milani P. Single particle optical extinction and scattering allows real time quantitative characterization of drug payload and degradation of polymeric nanoparticles, Sci. Rep. 5, 18228 (2015).
  37. Räisänen P., Kokhanovsky A., Guyot G., Jourdan O., and Nousiainen T. Parameterization of single-scattering properties of snow, Cryosphere 9, 1277–1301 (2015).
  38. Sessions W.R., Reid J.S., Benedetti A., Colarco P.R., da Silva A., Lu S., Sekiyama T., Tanaka T.Y., Baldasano J.M., et al. Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME), Atmos. Chem. Phys. 15, 335–362 (2015).
  39. Shi G., Li C., Ren T., and Wang Y. Retrieval of atmospheric aerosol and surface properties over land using satellite observations, IEEE Trans. Geosci. Remote Sensing 53, 1039–1047 (2015).
  40. Skorupski K. Using the DDA (discrete dipole approximation) method in determining the extinction cross section of black carbon, Metrol. Meas. Syst. 22, 153–164 (2015).
  41. Skorupski K., Hellmers J., Feng W., Mroczka J., Wriedt T., and Mädler L. Influence of sintering necks on the spectral behaviour of ITO clusters using the Discrete Dipole Approximation, J. Quant. Spectrosc. Radiat. Transfer 159, 11–18 (2015).
  42. Smunev D.A., Chaumet P.C., and Yurkin M.A. Rectangular dipoles in the discrete dipole approximation, J. Quant. Spectrosc. Radiat. Transfer 156, 67–79 (2015).
  43. Teixeira R., Paulo P.M.R., and Costa S.M.B. Gold nanoparticles in core-polyelectrolyte-shell assemblies promote large enhancements of phthalocyanine fluorescence, J. Phys. Chem. C 119, 21612–21619 (2015).
  44. Todisco F., D’Agostino S., Esposito M., Fernàndez-Domìnguez A.I., De Giorgi M., Ballarini D., Dominci L., Tarantini I., Cuscunà M., et al. Exciton-plasmon coupling enhancement via metal oxidation, ACS Nano 9, 9691–9699 (2015).
  45. Tornow F., Barker H.W., and Domenech C. On the use of simulated photon paths to co-register top-of-atmosphere radiances in EarthCARE radiative closure experiments, Quart. J. Royal Meteor. Soc. 141, 3239–3251 (2015).
  46. Tricoli U., Vochezer P., and Pfeilsticker K. Transition operator calculation with Green׳s dyadic technique for electromagnetic scattering: A numerical approach using the Dyson equation, J. Quant. Spectrosc. Radiat. Transfer 162, 77–88 (2015).
  47. Um J. and McFarquhar G.M. Formation of atmospheric halos and applicability of geometric optics for calculating single-scattering properties of hexagonal ice crystals: Impacts of aspect ratio and ice crystal size, J. Quant. Spectrosc. Radiat. Transfer 165, 134–152 (2015).
  48. Wang C., Yang P., and Liu X. A high-spectral-resolution radiative transfer model for simulating multilayered clouds and aerosols in the infrared spectral region, J. Atmos. Sci. 72, 926–942 (2015).
  49. Wu Y., Cheng T., Zheng L., Chen H., and Xu H. Single scattering properties of semi-embedded soot morphologies with intersecting and non-intersecting surfaces of absorbing spheres and non-absorbing host, J. Quant. Spectrosc. Radiat. Transfer 157, 1–13 (2015).
  50. Wu Y., Yang M., Sheng X., and Ren K.F. Computation of scattering matrix elements of large and complex shaped absorbing particles with multilevel fast multipole algorithm, J. Quant. Spectrosc. Radiat. Transfer 156, 88–96 (2015).
  51. Yang M., Wu Y., Sheng X., and Ren K.F. Comparison of scattering diagrams of large non-spherical particles calculated by VCRM and MLFMA, J. Quant. Spectrosc. Radiat. Transfer 162, 143–153 (2015).
  52. Yang P., Liou K.-N., Bi L., Liu C., Yi B., and Baum B.A. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization, Adv. Atmos. Sci. 32, 32–63 (2015).
  53. Yurkin M.A. and Huntemann M. Rigorous and fast discrete dipole approximation for particles near a plane interface, J. Phys. Chem. C 119, 29088–29094 (2015).
  54. Zhang Q. and Thompson J.E. A model for absorption of solar radiation by mineral dust within liquid cloud drops, J. Atmos. Sol.-Terr. Phys. 133, 121–128 (2015).
  55. Zouros G.P. and Kokkorakis G.C. Electromagnetic scattering by an inhomogeneous gyroelectric sphere using volume integral equation and orthogonal Dini-type basis functions, IEEE Trans. Antennas Propag. 63, 2665–2676 (2015).

2014 (30)

  1. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Cole B.H., Merrelli A., Schmitt C., and Wang C. Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100µm, J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014).
  2. Bi L. and Yang P. Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 138, 17–35 (2014).
  3. Bogdanowicz J. and Vandervorst W. On the understanding of local optical resonance in elongated dielectric particles, J. Quant. Spectrosc. Radiat. Transfer 146, 175–180 (2014).
  4. Colarco P.R., Nowottnick E.P., Randles C.A., Yi B., Yang P., Kim K.-M., Smith J.A., and Bardeen C.G. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index, J. Geophys. Res. Atmos. 119, 753–786 (2014).
  5. Cole B.H., Yang P., Baum B.A., Riedi J., and C.-Labonnote L. Ice particle habit and surface roughness derived from PARASOL polarization measurements, Atmos. Chem. Phys. 14, 3739–3750 (2014).
  6. Farafonov V.G. and Il’in V.B. Analytical long-wavelength approximation for parallelepipeds, J. Quant. Spectrosc. Radiat. Transfer 146, 244–249 (2014).
  7. Farafonov V.G. and Il’in V.B. Rayleigh approximation for light scattering at parallelepipeds, J. Opt. Technol. 81, 375–381 (2014).
  8. Fomin B.A. and Falaleeva V.A. The vertical structure of aerosols and clouds derived from satellites equipped with high-resolution polarization sensors, Int. J. Remote Sens. 35, 5800–5811 (2014).
  9. Iwabuchi H., Yamada S., Katagiri S., Yang P., and Okamoto H. Radiative and microphysical properties of cirrus cloud inferred from infrared measurements made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: retrieval method, J. Appl. Meteor. Climatol. 53, 1297–1316 (2014).
  10. Kugeiko M.M. and Smunev D.A. Method for determining the asphericity and microphysical parameters of erythrocytes from the directional scattering coefficient, Opt. Spectrosc. 117, 679–685 (2014).
  11. Lindqvist H., Jokinen O., Kandler K., Scheuvens D., and Nousiainen T. Single scattering by realistic, inhomogeneous mineral dust particles with stereogrammetric shapes, Atmos. Chem. Phys. 14, 143–157 (2014).
  12. Liu C., Panetta R.L., and Yang P. Inhomogeneity structure and the applicability of effective medium approximations in calculating light scattering by inhomogeneous particles, J. Quant. Spectrosc. Radiat. Transfer 146, 331–348 (2014).
  13. Lu Y., Aydin K., Clothiaux E.E., and Verlinde J. Dielectric constant adjustments in computations of the scattering properties of solid ice crystals using the Generalized Multi-particle Mie method, J. Quant. Spectrosc. Radiat. Transfer 135, 1–8 (2014).
  14. Lu Y., Clothiaux E.E., Aydin K., and Verlinde J. Estimating ice particle scattering properties using a modified Rayleigh-Gans approximation, J. Geophys. Res. Atmos. 119, 10471–10484 (2014).
  15. Massa E., Roschuk T., Maier S.A., and Giannini V. Discrete-dipole approximation on a rectangular cuboidal point lattice: considering dynamic depolarization, J. Opt. Soc. Am. A 31, 135–140 (2014).
  16. Moskalensky A.E., Strokotov D.I., Chernyshev A.V., Maltsev V.P., and Yurkin M.A. Additivity of light-scattering patterns of aggregated biological particles, J. Biomed. Opt. 19, 085004 (2014).
  17. Ori D., Maestri T., Rizzi R., Cimini D., Montopoli M., and Marzano F.S. Scattering properties of modeled complex snowflakes and mixed-phase particles at microwave and millimeter frequencies, J. Geophys. Res. Atmos. 119, 9931–9947 (2014).
  18. Podowitz D.I., Liu C., Yang P., and Yurkin M.A. Comparison of the pseudo-spectral time domain method and the discrete dipole approximation for light scattering by ice spheres, J. Quant. Spectrosc. Radiat. Transfer 146, 402–409 (2014).
  19. Potenza M. and Milani P. Free nanoparticle characterization by optical scattered field analysis: opportunities and perspectives, J. Nanopart. Res. 16, 1–15 (2014).
  20. Räbinä J., Mönkölä S., Rossi T., Penttilä A., and Muinonen K. Comparison of discrete exterior calculus and discrete-dipole approximation for electromagnetic scattering, J. Quant. Spectrosc. Radiat. Transfer 146, 417–423 (2014).
  21. Sokolowska A., Rudnicki J., Kostecki M., Wojtkiewicz S., Sawosz P., Chodun R., Zdunek K., and Olszyna A. Electric field used as the substitute for ultrasounds in the liquid exfoliation of hexagonal boron nitride, Microel. Engin. 126, 124–128 (2014).
  22. Tyynelä J. and Chandrasekar V. Characterizing falling snow using multifrequency dual-polarization measurements, J. Geophys. Res. Atmos. 119, 8268–8283 (2014).
  23. Tyynelä J., Leinonen J., Moisseev D., Nousiainen T., and von Lerber A. Modeling radar backscattering from melting snowflakes using spheroids with nonuniform distribution of water, J. Quant. Spectrosc. Radiat. Transfer 133, 504–519 (2014).
  24. Virkki A., Muinonen K., and Penttilä A. Radar albedos and circular-polarization ratios for realistic inhomogeneous media using the discrete-dipole approximation, J. Quant. Spectrosc. Radiat. Transfer 146, 480–491 (2014).
  25. Wang A., Dimiduk T.G., Fung J., Razavi S., Kretzschmar I., Chaudhary K., and Manoharan V.N. Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles, J. Quant. Spectrosc. Radiat. Transfer 146, 499–509 (2014).
  26. Wang C., Yang P., Dessler A., Baum B.A., and Hu Y. Estimation of the cirrus cloud scattering phase function from satellite observations, J. Quant. Spectrosc. Radiat. Transfer 138, 36–49 (2014).
  27. Yi B., Huang X., Yang P., Baum B.A., and Kattawar G.W. Considering polarization in MODIS-based cloud property retrievals by using a vector radiative transfer code, J. Quant. Spectrosc. Radiat. Transfer 146, 540–548 (2014).
  28. Yuen C. and Liu Q. Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe, J. Biophotonics 7, 683–689 (2014).
  29. Zhang H., Jing X., and Li J. Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1, Geosci. Model Dev. 7, 737–754 (2014).
  30. Zhang Q. and Thompson J.E. Effect of particle mixing morphology on aerosol scattering and absorption: A discrete dipole modeling study, GeoResJ 3–4, 9–18 (2014).

2013 (37)

  1. Amini S., You Y., Kattawar G.W., and Meissner K.E. Effect of surrounding inhomogeneities on whispering gallery modes in spherical resonators, Appl. Opt. 52, 690–697 (2013).
  2. Apostolopoulos G., Tsinopoulos S.V., and Dermatas E. A methodology for estimating the shape of biconcave red blood cells using multicolor scattering images, Biomed. Signal Proc. Contr. 8, 263–272 (2013).
  3. Bi L. and Yang P. Modeling of light scattering by biconcave and deformed red blood cells with the invariant imbedding T-matrix method, J. Biomed. Opt. 18, 055001 (2013).
  4. Bi L., Yang P., Kattawar G.W., and Mishchenko M.I. Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles, J. Quant. Spectrosc. Radiat. Transfer 116, 169–183 (2013).
  5. Cole B.H., Yang P., Baum B.A., Riedi J., C.-Labonnote L., Thieuleux F., and Platnick S. Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures, J. Appl. Meteor. Climatol. 52, 186–196 (2013).
  6. D’Agostino S., Alpeggiani F., and Andreani L.C. Strong coupling between a dipole emitter and localized plasmons: enhancement by sharp silver tips, Opt. Express 21, 27602–27610 (2013).
  7. D’Agostino S., Della Sala F., and Andreani L.C. Radiative coupling of high-order plasmonic modes with far-field, Photon. Nanostruct. Fundam. Applic. 11, 335–344 (2013).
  8. D’Agostino S., Della Sala F., and Andreani L.C. Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation, Phys. Rev. B 87, 205413 (2013).
  9. D’Agostino S., Della Sala F., and Andreani L.C. Dipole decay rates engineering via silver nanocones, Plasmonics 8, 1079–1086 (2013).
  10. Freddi S., Sironi L., D’Antuono R., Morone D., Donà A., Cabrini E., D’Alfonso L., Collini M., Pallavicini P., et al. A molecular thermometer for nanoparticles for optical hyperthermia, Nano Lett. 13, 2004–2010 (2013).
  11. Gao M., Yang P., and Kattawar G.W. Polarized extinction properties of plates with large aspect ratios, J. Quant. Spectrosc. Radiat. Transfer 131, 72–81 (2013).
  12. Gao M., Yang P., McKee D., and Kattawar G.W. Mueller matrix holographic method for small particle characterization: theory and numerical studies, Appl. Opt. 52, 5289–5296 (2013).
  13. Konokhova A.I., Gelash A.A., Yurkin M.A., Chernyshev A.V., and Maltsev V.P. High-precision characterization of individual E. coli cell morphology by scanning flow cytometry, Cytometry A 83, 568–575 (2013).
  14. Leinonen J., Moisseev D., and Nousiainen T. Linking snowflake microstructure to multi-frequency radar observations, J. Geophys. Res. Atmos. 118, 3259–3270 (2013).
  15. Lin T.-H., Yang P., and Yi B. Effect of black carbon on dust property retrievals from satellite observations, J. Appl. Remote Sens. 7, 073568 (2013).
  16. Liou K.N., Takano Y., and Yang P. Intensity and polarization of dust aerosols over polarized anisotropic surfaces, J. Quant. Spectrosc. Radiat. Transfer 127, 149–157 (2013).
  17. Liou K.N., Takano Y., Yue Q., and Yang P. On the radiative forcing of contrail cirrus contaminated by black carbon, Geophys. Res. Lett. 40, 778–784 (2013).
  18. Liu J. and Kattawar G.W. Detection of dinoflagellates by the light scattering properties of the chiral structure of their chromosomes, J. Quant. Spectrosc. Radiat. Transfer 131, 24–33 (2013).
  19. Logan T., Xi B., and Dong X. A comparison of the mineral dust absorptive properties between two Asian dust events, Atmosphere 4, 1–16 (2013).
  20. Merikallio S., Nousiainen T., Kahnert M., and Harri A.-M. Light scattering by the Martian dust analog, palagonite, modeled with ellipsoids, Opt. Express 21, 17972–17985 (2013).
  21. (DB) Moskalensky A.E., Yurkin M.A., Konokhova A.I., Strokotov D.I., Nekrasov V.M., Chernyshev A.V., Tsvetovskaya G.A., Chikova E.D., and Maltsev V.P. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering, J. Biomed. Opt. 18, 017001 (2013).
  22. Nikitin S.Yu., Priezzhev A.V., and Lugovtsov A.E. Analysis of laser beam scattering by an ensemble of particles modeling red blood cells in ektacytometer, J. Quant. Spectrosc. Radiat. Transfer 121, 1–8 (2013).
  23. Sun B., Yang P., and Kattawar G.W. Many-body iterative T-matrix method for large aspect ratio particles, J. Quant. Spectrosc. Radiat. Transfer 127, 165–175 (2013).
  24. Teschl F., Randeu W.L., and Teschl R. Single-scattering of preferentially oriented ice crystals at centimeter and millimeter wavelengths, Atmos. Res. 119, 112–119 (2013).
  25. Tyynelä J., Leinonen J., Westbrook C.D., Moisseev D., and Nousiainen T. Applicability of the Rayleigh-Gans approximation for scattering by snowflakes at microwave frequencies in vertical incidence, J. Geophys. Res. Atmos. 118, 1826–1839 (2013).
  26. Um J. and McFarquhar G.M. Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals, J. Quant. Spectrosc. Radiat. Transfer 127, 207–223 (2013).
  27. Wojtkiewicz S., Sawosz P., Kostecki M., and Sokolowska A. Optical method for characterization of nanoplates in lyosol, Microel. Engin. 108, 121–126 (2013).
  28. Xie Y., Carbone L., Nobile C., Grillo V., D’Agostino S., Della Sala F., Giannini C., Altamura D., Oelsner C., et al. Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling, ACS Nano 7, 7352–7369 (2013).
  29. (DB) Yang P., Bi L., Baum B.A., Liou K.-N., Kattawar G.W., Mishchenko M.I., and Cole B. Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm, J. Atmos. Sci. 70, 330–347 (2013).
  30. Yi B., Yang P., Baum B.A., L’Ecuyer T., Oreopoulos L., Mlawer E.J., Heymsfield A.J., and Liou K.-N. Influence of ice particle surface roughening on the global cloud radiative effect, J. Atmos. Sci. 70, 2794–2807 (2013).
  31. Yuen C. and Liu Q. Optimization of Fe3O4@Ag nanoshells in magnetic field-enriched surface-enhanced resonance Raman scattering for malaria diagnosis, Analyst 138, 6494–6500 (2013).
  32. Yurkin M.A. Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle, J. Quant. Spectrosc. Radiat. Transfer 131, 82–87 (2013).
  33. Yurkin M.A. and Kahnert M. Light scattering by a cube: Accuracy limits of the discrete dipole approximation and the T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 123, 176–183 (2013).
  34. Zhai P.-W., Hu Y., Trepte C.R., Winker D.M., Josset D.B., Lucker P.L., and Kattawar G.W. Inherent optical properties of the coccolithophore: Emiliania huxleyi, Opt. Express 21, 17625–17638 (2013).
  35. Zhang J., Feng Y., Moran M.S., Lu J.Q., Yang L.V., Sa Y., Zhang N., Dong L., and Hu X.-H. Analysis of cellular objects through diffraction images acquired by flow cytometry, Opt. Express 21, 24819–24828 (2013).
  36. Zhang Q., Xiao J.J., Zhang X.M., and Yao Y. Optical binding force of gold nanorod dimers coupled to a metallic slab, Opt. Commun. 301–302, 121–126 (2013).
  37. Zhang Q., Xiao J.J., Zhang X.M., Yao Y., and Liu H. Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer, Opt. Express 21, 6601–6608 (2013).

2012 (17)

  1. Caramanica F. A method based on particle swarm optimization to retrieve the shape of red blood cells: a preliminary assessment, Prog. Electromag. Res. M 27, 109–117 (2012).
  2. van Diedenhoven B., Cairns B., Geogdzhayev I.V., Fridlind A.M., Ackerman A.S., Yang P., and Baum B.A. Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements - Part 1: Methodology and evaluation with simulated measurements, Atmos. Meas. Tech. 5, 2361–2374 (2012).
  3. Evans K.F., Wang J.R., O’C Starr D., Heymsfield G., Li L., Tian L., Lawson R.P., Heymsfield A.J., and Bansemer A. Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4, Atmos. Meas. Tech. 5, 2277–2306 (2012).
  4. Gao M., You Y., Yang P., and Kattawar G.W. Backscattering properties of small layered plates: a model for iridosomes, Opt. Express 20, 25111–25120 (2012).
  5. Kahnert M., Nousiainen T., Thomas M.A., and Tyynelä J. Light scattering by particles with small-scale surface roughness: Comparison of four classes of model geometries, J. Quant. Spectrosc. Radiat. Transfer 113, 2356–2367 (2012).
  6. Kalkman J., Bykov A.V., Streekstra G.J., and van Leeuwen T.G. Multiple scattering effects in Doppler optical coherence tomography of flowing blood, Phys. Med. Biol. 57, 1907–1917 (2012).
  7. Lee J., Kim J., Yang P., and Hsu N.C. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database, Atmos. Chem. Phys. 12, 7087–7102 (2012).
  8. Leinonen J., Kneifel S., Moisseev D., Tyynelä J., Tanelli S., and Nousiainen T. Evidence of nonspheroidal behavior in millimeter-wavelength radar observations of snowfall, J. Geophys. Res. 117, D18205 (2012).
  9. Liu C., Bi L., Panetta R.L., Yang P., and Yurkin M.A. Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations, Opt. Express 20, 16763–16776 (2012).
  10. Liu X., Ding S., Bi L., and Yang P. On the use of scattering kernels to calculate ice cloud bulk optical properties, J. Atmos. Oceanic Technol. 29, 50–63 (2012).
  11. Ma H., Bendix P.M., and Oddershede L.B. Large-scale orientation dependent heating from a single irradiated gold nanorod, Nano Lett. 12, 3954–3960 (2012).
  12. Schmidt K., Yurkin M.A., and Kahnert M. A case study on the reciprocity in light scattering computations, Opt. Express 20, 23253–23274 (2012).
  13. Xie Y., Yang P., Liou K.-N., Minnis P., and Duda D.P. Parameterization of contrail radiative properties for climate studies, Geophys. Res. Lett. 39, L00F02 (2012).
  14. Yi B., Yang P., Liou K.-N., Minnis P., and Penner J.E. Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett. 39 (2012).
  15. Zhang X., Gray D.J., Huot Y., You Y., and Bi L. Comparison of optically derived particle size distributions: scattering over the full angular range versus diffraction at near forward angles, Appl. Opt. 51, 5085–5099 (2012).
  16. Zijlstra P., Paulo P.M.R., and Orrit M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod, Nat. Nanotech. 7, 379–382 (2012).
  17. Zimmermann M., Tausendfreund A., Patzelt S., Goch G., Kieß S., Shaikh M.Z., Gregoire M., and Simon S. In-process measuring procedure for sub-100 nm structures, J. Laser Appl. 24, 042010 (2012).

2011 (22)

  1. Bi L., Yang P., Kattawar G.W., Hu Y., and Baum B.A. Diffraction and external reflection by dielectric faceted particles, J. Quant. Spectrosc. Radiat. Transfer 112, 163–173 (2011).
  2. Bi L., Yang P., Kattawar G.W., Hu Y., and Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method, J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011).
  3. Chigrin D.N., Kremers C., and Zhukovsky S.V. Plasmonic nanoparticle monomers and dimers: from nanoantennas to chiral metamaterials, Appl. Phys. B 105, 81–97 (2011).
  4. D’Agostino S. and Della Sala F. Silver nanourchins in plasmonics: theoretical investigation on the optical properties of the branches, J. Phys. Chem. C 115, 11934–11940 (2011).
  5. Farafonov V.G. and Il’in V.B. On scattering of light by small axially symmetric particles, Opt. Spectrosc. 111, 824–831 (2011).
  6. Farafonov V.G., Vinokurov A.A., and Barkanov S.V. Electrostatic solution and rayleigh approximation for small nonspherical particles in a spheroidal basis, Opt. Spectrosc. 111, 980–992 (2011).
  7. Gasteiger J., Groß S., Freudenthaler V., and Wiegner M. Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements, Atmos. Chem. Phys. 11, 2209–2223 (2011).
  8. Gasteiger J., Wiegner M., Groß S., Freudenthaler V., Toledano C., Tesche M., and Kandler K. Modelling lidar-relevant optical properties of complex mineral dust aerosols, Tellus B 63, 725–741 (2011).
  9. Huntemann M., Heygster G., and Hong G. Discrete dipole approximation simulations on GPUs using OpenCL – Application on cloud ice particles, J. Comput. Sci. 2, 262–271 (2011).
  10. Il’in V.B. and Farafonov V.G. Rayleigh approximation for axisymmetric scatterers, Opt. Lett. 36, 4080–4082 (2011).
  11. Ingersoll A.P. and Ewald S.P. Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images, Icarus 216, 492–506 (2011).
  12. Kremers C. and Chigrin D.N. Light scattering on nanowire antennas: A semi-analytical approach, Photon. Nanostruct. Fundam. Applic. 9, 358–366 (2011).
  13. Lumme K. and Penttilä A. Model of light scattering by dust particles in the solar system: Applications to cometary comae and planetary regoliths, J. Quant. Spectrosc. Radiat. Transfer 112, 1658–1670 (2011).
  14. Muinonen K. and Pieniluoma T. Light scattering by gaussian random ellipsoid particles: first results with discrete-dipole approximation, J. Quant. Spectrosc. Radiat. Transfer 112, 1747–1752 (2011).
  15. Muinonen K., Tyynelä J., Zubko E., Lindqvist H., Penttilä A., and Videen G. Polarization of light backscattered by small particles, J. Quant. Spectrosc. Radiat. Transfer 112, 2193–2212 (2011).
  16. Shaikh M.Z., Kieß S., Grégoire M., Simon S., Tausendfreund A., Zimmermann M., and Goch G. In-process characterization tool for optically produced sub-100-nm structures, J. Vacuum Sci. Tech. B 29, 051807 (2011).
  17. Shaviv E., Schubert O., Alves-Santos M., Goldoni G., Di Felice R., Vallée F., Del Fatti N., Banin U., and Sönnichsen C. Absorption properties of metal–semiconductor hybrid nanoparticles, ACS Nano 5, 4712–4719 (2011).
  18. Tyynelä J., Leinonen J., Moisseev D., and Nousiainen T. Radar backscattering from snowflakes: comparison of fractal, aggregate, and soft spheroid models, J. Atmos. Oceanic Technol. 28, 1365–1372 (2011).
  19. Xie Y., Yang P., Kattawar G.W., Baum B.A., and Hu Y. Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Appl. Opt. 50, 1065–1081 (2011).
  20. Yang P., Wendisch M., Bi L., Kattawar G., Mishchenko M., and Hu Y. Dependence of extinction cross-section on incident polarization state and particle orientation, J. Quant. Spectrosc. Radiat. Transfer 112, 2035–2039 (2011).
  21. Yi B., Hsu C.N., Yang P., and Tsay S.-C. Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index, J. Aeros. Sci. 42, 631–644 (2011).
  22. Yurkin M.A. and Hoekstra A.G. The discrete-dipole-approximation code ADDA: Capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

2010 (11)

  1. Bi L., Yang P., and Kattawar G.W. Edge-effect contribution to the extinction of light by dielectric disks and cylindrical particles, Appl. Opt. 49, 4641–4646 (2010).
  2. Bi L., Yang P., Kattawar G.W., and Kahn R. Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra, Appl. Opt. 49, 334–342 (2010).
  3. D’Agostino S. and Della Sala F. Active role of oxide layers on the polarization of plasmonic nanostructures, ACS Nano 4, 4117–4125 (2010).
  4. D’Agostino S. and Della Sala F. Electromagnetic modelling of the optical behaviour of silver nanospheres on dielectric substrates: The role of a silver buffer layer, Superlat. Microstruct. 47, 55–59 (2010).
  5. Gilev K.V., Eremina E., Yurkin M.A., and Maltsev V.P. Comparison of the discrete dipole approximation and the discrete source method for simulation of light scattering by red blood cells, Opt. Express 18, 5681–5690 (2010).
  6. Harrison R.K. and Ben-Yakar A. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate, Opt. Express 18, 22556–22571 (2010).
  7. (DB) Meng Z., Yang P., Kattawar G.W., Bi L., Liou K.N., and Laszlo I. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations, J. Aeros. Sci. 41, 501–512 (2010).
  8. Teschl F., Randeu W.L., and Teschl R. Microwave scattering from ice crystals: how much parameters can differ from equal volume spheres, Adv. Geosci. 25, 127–133 (2010).
  9. Yuen C., Zheng W., and Huang Z. Optimization of extinction efficiency of gold-coated polystyrene bead substrates improves surface-enhanced Raman scattering effects by post-growth microwave heating treatment, J. Raman Spectrosc. 41, 374–380 (2010).
  10. Yurkin M.A., de Kanter D., and Hoekstra A.G. Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles, J. Nanophoton. 4, 041585 (2010).
  11. Yurkin M.A., Min M., and Hoekstra A.G. Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived, Phys. Rev. E 82, 036703 (2010).

2009 (11)

  1. Bi L., Yang P., Kattawar G.W., and Kahn R. Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes, Appl. Opt. 48, 114–126 (2009).
  2. D’Agostino S., Pompa P.P., Chiuri R., Phaneuf R.J., Britti D.G., Rinaldi R., Cingolani R., and Della Sala F. Enhanced fluorescence by metal nanospheres on metal substrates, Opt. Lett. 34, 2381–2383 (2009).
  3. Grynko Y. and Pulbere S. Discrete dipole approximation simulations of light reflection from flat non-transparent particles with rough surfaces, J. Quant. Spectrosc. Radiat. Transfer 110, 1382–1391 (2009).
  4. Lindqvist H., Muinonen K., and Nousiainen T. Light scattering by coated Gaussian and aggregate particles, J. Quant. Spectrosc. Radiat. Transfer 110, 1398–1410 (2009).
  5. McDonald J., Golden A., and Jennings S.G. OpenDDA: a novel high-performance computational framework for the discrete dipole approximation, Int. J. High Perf. Comput. Appl. 23, 42–61 (2009).
  6. Penttilä A. and Lumme K. The effect of the properties of porous media on light scattering, J. Quant. Spectrosc. Radiat. Transfer 110, 1993–2001 (2009).
  7. Priezzhev A.V., Nikitin S.Yu., and Lugovtsov A.E. Ray-wave approximation for the calculation of laser light scattering by transparent dielectric particles, mimicking red blood cells or their aggregates, J. Quant. Spectrosc. Radiat. Transfer 110, 1535–1544 (2009).
  8. Schmidt V. and Wriedt T. T-matrix method for biaxial anisotropic particles, J. Quant. Spectrosc. Radiat. Transfer 110, 1392–1397 (2009).
  9. Strokotov D.I., Yurkin M.A., Gilev K.V., van Bockstaele D.R., Hoekstra A.G., Rubtsov N.B., and Maltsev V.P. Is there a difference between T- and B-lymphocyte morphology?, J. Biomed. Opt. 14, 064036 (2009).
  10. Teschl F., Randeu W.L., and Teschl R. Single scattering from frozen hydrometeors at microwave frequencies, Atmos. Res. 94, 564–578 (2009).
  11. Tyynelä J., Nousiainen T., Göke S., and Muinonen K. Modeling C-band single scattering properties of hydrometeors using discrete-dipole approximation and T-matrix method, J. Quant. Spectrosc. Radiat. Transfer 110, 1654–1664 (2009).

2008 (8)

  1. Alegret J., Rindzevicius T., Pakizeh T., Alaverdyan Y., Gunnarsson L., and Käll M. Plasmonic properties of silver trimers with trigonal symmetry fabricated by electron-beam lithography, J. Phys. Chem. C 112, 14313–14317 (2008).
  2. Cho D.J., Wang F., Zhang X., and Shen Y.R. Contribution of the electric quadrupole resonance in optical metamaterials, Phys. Rev. B 78, 121101 (2008).
  3. Ekici O., Harrison R.K., Durr N.J., Eversole D.S., Lee M., and Ben-Yakar A. Thermal analysis of gold nanorods heated with femtosecond laser pulses, J. Phys. D 41, 185501 (2008).
  4. Fantoni R., Fiorani L., Palucci A., Semyanov K.A., and Spizzichino V. Light scattering measurement of nanoparticle aggregates by scanning flow cytometer, J. Optoelectron. Adv. Mater. 10, 2474–2481 (2008).
  5. Lugovtsov A.E., Nikitin S.Y., and Priezzhev A.V. Ray-wave approximation for calculating laser radiation scattering by a transparent dielectric spheroidal particle, Quant. Electron. 38, 606–611 (2008).
  6. Orlova D.Y., Yurkin M.A., Hoekstra A.G., and Maltsev V.P. Light scattering by neutrophils: model, simulation, and experiment, J. Biomed. Opt. 13, 054057 (2008).
  7. Parviainen H. and Lumme K. Scattering from rough thin films: discrete-dipole-approximation simulations, J. Opt. Soc. Am. A 25, 90–97 (2008).
  8. Selhuber-Unkel C., Zins I., Schubert O., Sönnichsen C., and Oddershede L.B. Quantitative optical trapping of single gold nanorods, Nano Lett. 8, 2998–3003 (2008).

2007 (5)

  1. Penttilä A., Zubko E., Lumme K., Muinonen K., Yurkin M.A., Draine B.T., Rahola J., Hoekstra A.G., and Shkuratov Y. Comparison between discrete dipole implementations and exact techniques, J. Quant. Spectrosc. Radiat. Transfer 106, 417–436 (2007).
  2. Yurkin M.A. and Hoekstra A.G. The discrete dipole approximation: An overview and recent developments, J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
  3. Yurkin M.A., Hoekstra A.G., Brock R.S., and Lu J.Q. Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers, Opt. Express 15, 17902–17911 (2007).
  4. Yurkin M.A., Maltsev V.P., and Hoekstra A.G. The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength, J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).
  5. Yurkin M.A., Semyanov K.A., Maltsev V.P., and Hoekstra A.G. Discrimination of granulocyte subtypes from light scattering: Theoretical analysis using a granulated sphere model, Opt. Express 15, 16561–16580 (2007).

2006 (3)

  1. Kolesnikova I.V., Potapov S.V., Yurkin M.A., Hoekstra A.G., Maltsev V.P., and Semyanov K.A. Determination of volume, shape and refractive index of individual blood platelets, J. Quant. Spectrosc. Radiat. Transfer 102, 37–45 (2006).
  2. Yurkin M.A., Maltsev V.P., and Hoekstra A.G. Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy, J. Opt. Soc. Am. A 23, 2592–2601 (2006).
  3. Yurkin M.A., Maltsev V.P., and Hoekstra A.G. Convergence of the discrete dipole approximation. I. Theoretical analysis, J. Opt. Soc. Am. A 23, 2578–2591 (2006).

2005 and earlier (11)

Those papers used earlier version of the code before the public release of ADDA.

  1. Yurkin M.A., Semyanov K.A., Tarasov P.A., Chernyshev A.V., Hoekstra A.G., and Maltsev V.P. Experimental and theoretical study of light scattering by individual mature red blood cells with scanning flow cytometry and discrete dipole approximation, Appl. Opt. 44, 5249–5256 (2005).
  2. Hoekstra A.G., Frijlink M., Waters L.B.F.M., and Sloot P.M.A. Radiation forces in the discrete-dipole approximation, J. Opt. Soc. Am. A 18, 1944–1953 (2001).
  3. Hoekstra A.G., Grimminck M.D., and Sloot P.M.A. Large scale simulations of elastic light scattering by a fast discrete dipole approximation, Int. J. Mod. Phys. C 9, 87–102 (1998).
  4. Hoekstra A.G., Rahola J., and Sloot P.M.A. Accuracy of internal fields in volume integral equation simulations of light scattering, Appl. Opt. 37, 8482–8497 (1998).
  5. Hoekstra A.G., Sloot P.M.A., van der Linden F., van Muiswinkel M., Vesseur J.J.J., and Hertzberger L.O. Native and generic parallel programming environments on a transputer and a PowerPC platform, Concurrency Pract. Ex. 8, 19–46 (1996).
  6. Hoekstra A.G. and Sloot P.M.A. Coupled dipole simulations of elastic light scattering on parallel systems, Int. J. Mod. Phys. C 6, 663–679 (1995).
  7. Hoekstra A.G. and Sloot P.M.A. New computational techniques to simulate light-scattering from arbitrary particles, Part. Part. Sys. Charact. 11, 189–193 (1994).
  8. Hoekstra A.G. and Sloot P.M.A. Dipolar unit size in coupled-dipole calculations of the scattering matrix elements, Opt. Lett. 18, 1211–1213 (1993).
  9. Sloot P.M.A. and Hoekstra A.G. Light scattering simulations on a massively parallel computer at the IC3A, Transput. Applic. 1, 42–49 (1993).
  10. Sloot P.M.A. and Hoekstra A.G. Implementation of a parallel conjugate gradient method for simulation of elastic light scattering, Comput. Phys. 6, 323 (1992).
  11. Hoekstra A.G., Hertzberger L.O., and Sloot P.M.A. Simulation of elastic light scattering on distributed memory machines, Bull. Am. Phys. Soc. 36, 1798 (1991).
⚠️ **GitHub.com Fallback** ⚠️