Library - abner722/BUM-Fitness-Pal GitHub Wiki
#include <Wire.h>
#include <Adafruit_MMA8451.h>
#include <Adafruit_Sensor.h>
Adafruit_MMA8451 mma = Adafruit_MMA8451();
void setup(void) {
Serial.begin(9600);
Serial.println("Adafruit MMA8451 test!");
if (! mma.begin()) {
Serial.println("Couldnt start");
while (1);
}
Serial.println("MMA8451 found!");
mma.setRange(MMA8451_RANGE_2_G);
Serial.print("Range = "); Serial.print(2 << mma.getRange());
Serial.println("G");
}
void loop() {
// Read the 'raw' data in 14-bit counts
mma.read();
Serial.print("X:\t"); Serial.print(mma.x);
Serial.print("\tY:\t"); Serial.print(mma.y);
Serial.print("\tZ:\t"); Serial.print(mma.z);
Serial.println();
/* Get a new sensor event */
sensors_event_t event;
mma.getEvent(&event);
/* Display the results (acceleration is measured in m/s^2) */
Serial.print("X: \t"); Serial.print(event.acceleration.x); Serial.print("\t");
Serial.print("Y: \t"); Serial.print(event.acceleration.y); Serial.print("\t");
Serial.print("Z: \t"); Serial.print(event.acceleration.z); Serial.print("\t");
Serial.println("m/s^2 ");
/* Get the orientation of the sensor */
uint8_t o = mma.getOrientation();
switch (o) {
case MMA8451_PL_PUF:
Serial.println("Portrait Up Front");
break;
case MMA8451_PL_PUB:
Serial.println("Portrait Up Back");
break;
case MMA8451_PL_PDF:
Serial.println("Portrait Down Front");
break;
case MMA8451_PL_PDB:
Serial.println("Portrait Down Back");
break;
case MMA8451_PL_LRF:
Serial.println("Landscape Right Front");
break;
case MMA8451_PL_LRB:
Serial.println("Landscape Right Back");
break;
case MMA8451_PL_LLF:
Serial.println("Landscape Left Front");
break;
case MMA8451_PL_LLB:
Serial.println("Landscape Left Back");
break;
}
Serial.println();
delay(500);
}
Smoothing(From the Arduino IDE):
/ Define the number of samples to keep track of. The higher the number,
// the more the readings will be smoothed, but the slower the output will
// respond to the input. Using a constant rather than a normal variable lets
// use this value to determine the size of the readings array.
const int numReadings = 10;
int readings[numReadings]; // the readings from the analog input
int readIndex = 0; // the index of the current reading
int total = 0; // the running total
int average = 0; // the average
int inputPin = A0;
void setup() {
// initialize serial communication with computer:
Serial.begin(9600);
// initialize all the readings to 0:
for (int thisReading = 0; thisReading < numReadings; thisReading++) {
readings[thisReading] = 0;
}
}
void loop() {
// subtract the last reading:
total = total - readings[readIndex];
// read from the sensor:
readings[readIndex] = analogRead(inputPin);
// add the reading to the total:
total = total + readings[readIndex];
// advance to the next position in the array:
readIndex = readIndex + 1;
// if we're at the end of the array...
if (readIndex >= numReadings) {
// ...wrap around to the beginning:
readIndex = 0;
}
// calculate the average:
average = total / numReadings;
// send it to the computer as ASCII digits
Serial.println(average);
delay(1); // delay in between reads for stability
}
Analog Read (From the Arduino IDE):
/*
ReadAnalogVoltage
Reads an analog input on pin 0, converts it to voltage, and prints the result to the serial monitor.
Graphical representation is available using serial plotter (Tools > Serial Plotter menu)
Attach the center pin of a potentiometer to pin A0, and the outside pins to +5V and ground.
This example code is in the public domain.
*/
// the setup routine runs once when you press reset:
void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);
}
// the loop routine runs over and over again forever:
void loop() {
// read the input on analog pin 0:
int sensorValue = analogRead(A0);
// Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V):
float voltage = sensorValue * (5.0 / 1023.0);
// print out the value you read:
Serial.println(voltage);
}
`/* Pulse Sensor Amped 1.4 by Joel Murphy and Yury Gitman http://www.pulsesensor.com
---------------------- Notes ---------------------- ----------------------
This code:
1) Blinks an LED to User's Live Heartbeat PIN 13
2) Fades an LED to User's Live HeartBeat
3) Determines BPM
4) Prints All of the Above to Serial
Read Me:
https://github.com/WorldFamousElectronics/PulseSensor_Amped_Arduino/blob/master/README.md
---------------------- ---------------------- ----------------------
*/
// Variables
int pulsePin = 0; // Pulse Sensor purple wire connected to analog pin 0
int blinkPin = 13; // pin to blink led at each beat
int fadePin = 5; // pin to do fancy classy fading blink at each beat
int fadeRate = 0; // used to fade LED on with PWM on fadePin
// Volatile Variables, used in the interrupt service routine!
volatile int BPM; // int that holds raw Analog in 0. updated every 2mS
volatile int Signal; // holds the incoming raw data
volatile int IBI = 600; // int that holds the time interval between beats! Must be seeded!
volatile boolean Pulse = false; // "True" when User's live heartbeat is detected. "False" when not a "live beat".
volatile boolean QS = false; // becomes true when Arduoino finds a beat.
// Regards Serial OutPut -- Set This Up to your needs
static boolean serialVisual = true; // Set to 'false' by Default. Re-set to 'true' to see Arduino Serial Monitor ASCII Visual Pulse
void setup(){
pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat!
pinMode(fadePin,OUTPUT); // pin that will fade to your heartbeat!
Serial.begin(115200); // we agree to talk fast!
interruptSetup(); // sets up to read Pulse Sensor signal every 2mS
// IF YOU ARE POWERING The Pulse Sensor AT VOLTAGE LESS THAN THE BOARD VOLTAGE,
// UN-COMMENT THE NEXT LINE AND APPLY THAT VOLTAGE TO THE A-REF PIN
// analogReference(EXTERNAL);
}
// Where the Magic Happens
void loop(){
serialOutput() ;
if (QS == true){ // A Heartbeat Was Found
// BPM and IBI have been Determined
// Quantified Self "QS" true when arduino finds a heartbeat
fadeRate = 255; // Makes the LED Fade Effect Happen
// Set 'fadeRate' Variable to 255 to fade LED with pulse
serialOutputWhenBeatHappens(); // A Beat Happened, Output that to serial.
QS = false; // reset the Quantified Self flag for next time
}
ledFadeToBeat(); // Makes the LED Fade Effect Happen
delay(20); // take a break
}
}
void ledFadeToBeat(){
fadeRate -= 15; // set LED fade value
fadeRate = constrain(fadeRate,0,255); // keep LED fade value from going into negative numbers!
analogWrite(fadePin,fadeRate); // fade LED
}
Serial Handling
//////////
///////// All Serial Handling Code,
///////// It's Changeable with the 'serialVisual' variable
///////// Set it to 'true' or 'false' when it's declared at start of code.
/////////
void serialOutput(){ // Decide How To Output Serial.
if (serialVisual == true){
arduinoSerialMonitorVisual('-', Signal); // goes to function that makes Serial Monitor Visualizer
} else{
sendDataToSerial('S', Signal); // goes to sendDataToSerial function
}
}
// Decides How To OutPut BPM and IBI Data
void serialOutputWhenBeatHappens(){
if (serialVisual == true){ // Code to Make the Serial Monitor Visualizer Work
Serial.print("*** Heart-Beat Happened *** "); //ASCII Art Madness
Serial.print("BPM: ");
Serial.print(BPM);
Serial.print(" ");
} else{
sendDataToSerial('B',BPM); // send heart rate with a 'B' prefix
sendDataToSerial('Q',IBI); // send time between beats with a 'Q' prefix
}
}
// Sends Data to Pulse Sensor Processing App, Native Mac App, or Third-party Serial Readers.
void sendDataToSerial(char symbol, int data ){
Serial.print(symbol);
Serial.println(data);
}
// Code to Make the Serial Monitor Visualizer Work
void arduinoSerialMonitorVisual(char symbol, int data ){
const int sensorMin = 0; // sensor minimum, discovered through experiment
const int sensorMax = 1024; // sensor maximum, discovered through experiment
int sensorReading = data;
// map the sensor range to a range of 12 options:
int range = map(sensorReading, sensorMin, sensorMax, 0, 11);
// do something different depending on the
// range value:
switch (range) {
case 0:
Serial.println(""); /////ASCII Art Madness
break;
case 1:
Serial.println("---");
break;
case 2:
Serial.println("------");
break;
case 3:
Serial.println("---------");
break;
case 4:
Serial.println("------------");
break;
case 5:
Serial.println("--------------|-");
break;
case 6:
Serial.println("--------------|---");
break;
case 7:
Serial.println("--------------|-------");
break;
case 8:
Serial.println("--------------|----------");
break;
case 9:
Serial.println("--------------|----------------");
break;
case 10:
Serial.println("--------------|-------------------");
break;
case 11:
Serial.println("--------------|-----------------------");
break;
}
}
interrupt
volatile int rate[10]; // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0; // used to determine pulse timing
volatile unsigned long lastBeatTime = 0; // used to find IBI
volatile int P =512; // used to find peak in pulse wave, seeded
volatile int T = 512; // used to find trough in pulse wave, seeded
volatile int thresh = 525; // used to find instant moment of heart beat, seeded
volatile int amp = 100; // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true; // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false; // used to seed rate array so we startup with reasonable BPM
void interruptSetup(){
// Initializes Timer2 to throw an interrupt every 2mS.
TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE
TCCR2B = 0x06; // DON'T FORCE COMPARE, 256 PRESCALER
OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE
TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A
sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}
// THIS IS THE TIMER 2 INTERRUPT SERVICE ROUTINE.
// Timer 2 makes sure that we take a reading every 2 miliseconds
ISR(TIMER2_COMPA_vect){ // triggered when Timer2 counts to 124
cli(); // disable interrupts while we do this
Signal = analogRead(pulsePin); // read the Pulse Sensor
sampleCounter += 2; // keep track of the time in mS with this variable
int N = sampleCounter - lastBeatTime; // monitor the time since the last beat to avoid noise
// find the peak and trough of the pulse wave
if(Signal < thresh && N > (IBI/5)*3){ // avoid dichrotic noise by waiting 3/5 of last IBI
if (Signal < T){ // T is the trough
T = Signal; // keep track of lowest point in pulse wave
}
}
if(Signal > thresh && Signal > P){ // thresh condition helps avoid noise
P = Signal; // P is the peak
} // keep track of highest point in pulse wave
// NOW IT'S TIME TO LOOK FOR THE HEART BEAT
// signal surges up in value every time there is a pulse
if (N > 250){ // avoid high frequency noise
if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ){
Pulse = true; // set the Pulse flag when we think there is a pulse
digitalWrite(blinkPin,HIGH); // turn on pin 13 LED
IBI = sampleCounter - lastBeatTime; // measure time between beats in mS
lastBeatTime = sampleCounter; // keep track of time for next pulse
if(secondBeat){ // if this is the second beat, if secondBeat == TRUE
secondBeat = false; // clear secondBeat flag
for(int i=0; i<=9; i++){ // seed the running total to get a realisitic BPM at startup
rate[i] = IBI;
}
}
if(firstBeat){ // if it's the first time we found a beat, if firstBeat == TRUE
firstBeat = false; // clear firstBeat flag
secondBeat = true; // set the second beat flag
sei(); // enable interrupts again
return; // IBI value is unreliable so discard it
}
// keep a running total of the last 10 IBI values
word runningTotal = 0; // clear the runningTotal variable
for(int i=0; i<=8; i++){ // shift data in the rate array
rate[i] = rate[i+1]; // and drop the oldest IBI value
runningTotal += rate[i]; // add up the 9 oldest IBI values
}
rate[9] = IBI; // add the latest IBI to the rate array
runningTotal += rate[9]; // add the latest IBI to runningTotal
runningTotal /= 10; // average the last 10 IBI values
BPM = 60000/runningTotal; // how many beats can fit into a minute? that's BPM!
QS = true; // set Quantified Self flag
// QS FLAG IS NOT CLEARED INSIDE THIS ISR
}
}
if (Signal < thresh && Pulse == true){ // when the values are going down, the beat is over
digitalWrite(blinkPin,LOW); // turn off pin 13 LED
Pulse = false; // reset the Pulse flag so we can do it again
amp = P - T; // get amplitude of the pulse wave
thresh = amp/2 + T; // set thresh at 50% of the amplitude
P = thresh; // reset these for next time
T = thresh;
}
if (N > 2500){ // if 2.5 seconds go by without a beat
thresh = 512; // set thresh default
P = 512; // set P default
T = 512; // set T default
lastBeatTime = sampleCounter; // bring the lastBeatTime up to date
firstBeat = true; // set these to avoid noise
secondBeat = false; // when we get the heartbeat back
}
sei(); // enable interrupts when youre done!
}// end isr
Timer_Interrupt_Notes These notes put together by Joel Murphy for Pulse Sensor Amped, 2015
The code that this section is attached to uses a timer interrupt
to sample the Pulse Sensor with consistent and regular timing.
The code is setup to read Pulse Sensor signal at 500Hz (every 2mS).
The reasoning for this can be found here:
http://pulsesensor.com/pages/pulse-sensor-amped-arduino-v1dot1
There are issues with using different timers to control the Pulse Sensor sample rate.
Sometimes, user will need to switch timers for access to other code libraries.
Also, some other hardware may have different timer setup requirements. This page
will cover those different needs and reveal the necessary settings. There are two
part of the code that will be discussed. The interruptSetup() routine, and
the interrupt function call. Depending on your needs, or the Arduino variant that you use,
check below for the correct settings.
******************************************************************************************
ARDUINO UNO, Pro 328-5V/16MHZ, Pro-Mini 328-5V/16MHz (or any board with ATmega328P running at 16MHz)
>> Timer2
Pulse Sensor Arduino UNO uses Timer2 by default.
Use of Timer2 interferes with PWM on pins 3 and 11.
There is also a conflict with the Tone library, so if you want tones, use Timer1 below.
void interruptSetup(){
// Initializes Timer2 to throw an interrupt every 2mS.
TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE
TCCR2B = 0x06; // DON'T FORCE COMPARE, 256 PRESCALER
OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE
TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A
sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}
use the following interrupt vector with Timer2
ISR(TIMER2_COMPA_vect)
>> Timer1
Use of Timer1 interferes with PWM on pins 9 and 10.
The Servo library also uses Timer1, so if you want servos, use Timer2 above.
void interruptSetup(){
// Initializes Timer1 to throw an interrupt every 2mS.
TCCR1A = 0x00; // DISABLE OUTPUTS AND PWM ON DIGITAL PINS 9 & 10
TCCR1B = 0x11; // GO INTO 'PHASE AND FREQUENCY CORRECT' MODE, NO PRESCALER
TCCR1C = 0x00; // DON'T FORCE COMPARE
TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1)
ICR1 = 16000; // TRIGGER TIMER INTERRUPT EVERY 2mS
sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}
Use the following ISR vector for the Timer1 setup above
ISR(TIMER1_OVF_vect)
>> Timer0
DON'T USE TIMER0! Timer0 is used for counting delay(), millis(), and micros().
Messing with Timer0 is highly unadvised!
******************************************************************************************
ARDUINO Fio, Lilypad, ProMini328-3V/8MHz (or any board with ATmega328P running at 8MHz)
>> Timer2
Pulse Sensor Arduino UNO uses Timer2 by default.
Use of Timer2 interferes with PWM on pins 3 and 11.
There is also a conflict with the Tone library, so if you want tones, use Timer1 below.
void interruptSetup(){
// Initializes Timer2 to throw an interrupt every 2mS.
TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE
TCCR2B = 0x05; // DON'T FORCE COMPARE, 128 PRESCALER
OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE
TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A
sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}
use the following interrupt vector with Timer2
ISR(TIMER2_COMPA_vect)
>> Timer1
Use of Timer1 interferes with PWM on pins 9 and 10.
The Servo library also uses Timer1, so if you want servos, use Timer2 above.
void interruptSetup(){
// Initializes Timer1 to throw an interrupt every 2mS.
TCCR1A = 0x00; // DISABLE OUTPUTS AND PWM ON DIGITAL PINS 9 & 10
TCCR1B = 0x11; // GO INTO 'PHASE AND FREQUENCY CORRECT' MODE, NO PRESCALER
TCCR1C = 0x00; // DON'T FORCE COMPARE
TIMSK1 = 0x01; // ENABLE OVERFLOW INTERRUPT (TOIE1)
ICR1 = 8000; // TRIGGER TIMER INTERRUPT EVERY 2mS
sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}
Use the following ISR vector for the Timer1 setup above
ISR(TIMER1_OVF_vect)
>> Timer0
DON'T USE TIMER0! Timer0 is used for counting delay(), millis(), and micros().
Messing with Timer0 is highly unadvised!
******************************************************************************************
ARDUINO Leonardo (or any board with ATmega32u4 running at 16MHz)
>> Timer1
Use of Timer1 interferes with PWM on pins 9 and 10.
void interruptSetup(){
TCCR1A = 0x00;
TCCR1B = 0x0C; // prescaler = 256
OCR1A = 0x7C; // count to 124
TIMSK1 = 0x02;
sei();
}
The only other thing you will need is the correct ISR vector in the next step.
ISR(TIMER1_COMPA_vect)
******************************************************************************************
ADAFRUIT Flora, ARDUINO Fio v3 (or any other board with ATmega32u4 running at 8MHz)
>> Timer1
Use of Timer1 interferes with PWM on pins 9 and 10.
void interruptSetup(){
TCCR1A = 0x00;
TCCR1B = 0x0C; // prescaler = 256
OCR1A = 0x3E; // count to 62
TIMSK1 = 0x02;
sei();
}
The only other thing you will need is the correct ISR vector in the next step.
ISR(TIMER1_COMPA_vect)
******************************************************************************************
ADAFRUIT Gemma (or any other board with ATtiny85 running at 8MHz)
NOTE: Gemma does not do serial communication!
Comment out or remove the Serial code in the Arduino sketch!
Timer1
Use of Timer1 breaks PWM output on pin D1
void interruptSetup(){
TCCR1 = 0x88; // Clear Timer on Compare, Set Prescaler to 128 TEST VALUE
GTCCR &= 0x81; // Disable PWM, don't connect pins to events
OCR1C = 0x7C; // Set the top of the count to 124 TEST VALUE
OCR1A = 0x7C; // Set the timer to interrupt after counting to TEST VALUE
bitSet(TIMSK,6); // Enable interrupt on match between TCNT1 and OCR1A
sei(); // Enable global interrupts
}
The only other thing you will need is the correct ISR vector in the next step.
ISR(TIMER1_COMPA_vect)
/*
LiquidCrystal Library - display() and noDisplay()
Demonstrates the use a 16x2 LCD display. The LiquidCrystal
library works with all LCD displays that are compatible with the
Hitachi HD44780 driver. There are many of them out there, and you
can usually tell them by the 16-pin interface.
This sketch prints "Hello World!" to the LCD and uses the
display() and noDisplay() functions to turn on and off
the display.
The circuit:
* LCD RS pin to digital pin 12
* LCD Enable pin to digital pin 11
* LCD D4 pin to digital pin 5
* LCD D5 pin to digital pin 4
* LCD D6 pin to digital pin 3
* LCD D7 pin to digital pin 2
* LCD R/W pin to ground
* 10K resistor:
* ends to +5V and ground
* wiper to LCD VO pin (pin 3)
Library originally added 18 Apr 2008
David A. Mellis
library modified 5 Jul 2009
by Limor Fried (http://www.ladyada.net)
example added 9 Jul 2009
by Tom Igoe
modified 22 Nov 2010
by Tom Igoe
This example code is in the public domain.
http://www.arduino.cc/en/Tutorial/LiquidCrystalDisplay
*/
// include the library code:
include <LiquidCrystal.h>
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("hello, world!");
}
void loop() {
// Turn off the display:
lcd.noDisplay();
delay(500);
// Turn on the display:
lcd.display();
delay(500);
}