en Performance Benchmarks - ZeroHawkeye/wordZero GitHub Wiki

Performance Benchmarks

This document provides comprehensive performance analysis of WordZero compared to similar libraries in other programming languages. Our benchmarks demonstrate WordZero's superior performance in document generation tasks.

δΈ­ζ–‡ζ–‡ζ‘£ | English Documentation

πŸ“Š Executive Summary

WordZero delivers exceptional performance in document generation, outperforming comparable libraries by significant margins:

  • 3.7x faster than JavaScript implementations
  • 21x faster than Python implementations
  • Zero dependencies with minimal memory footprint
  • Consistent performance across different document sizes

🎯 Benchmark Methodology

Test Environment

Hardware: Intel i7-11800H, 32GB RAM
OS: Windows 11 Pro
Go Version: 1.21.3
Node.js Version: 18.18.0
Python Version: 3.11.5

Test Scenarios

We tested three common document generation scenarios:

  1. Basic Document Creation: Simple text with formatting
  2. Table Generation: Complex tables with styling
  3. Template Processing: Dynamic content with variables

Libraries Compared

Language Library Version
Go WordZero v0.4.0
JavaScript docx v8.5.0
Python python-docx v0.8.11

πŸ“ˆ Performance Results

Overall Performance Comparison

Language Average Time Relative Performance Memory Usage
Golang (WordZero) 2.62ms 1.00x (baseline) ~5MB
JavaScript (docx) 9.63ms 3.67x slower ~12MB
Python (python-docx) 55.98ms 21.37x slower ~25MB

Detailed Benchmark Results

Test 1: Basic Document Creation

Operation: Create document with 10 formatted paragraphs
Iterations: 1000 runs
Language Min Time Max Time Avg Time Std Dev
Go 1.2ms 4.1ms 2.1ms 0.3ms
JavaScript 6.8ms 15.2ms 8.9ms 1.2ms
Python 42.1ms 78.5ms 51.2ms 4.8ms

Test 2: Table Generation

Operation: Create 5x10 table with formatting and data
Iterations: 500 runs
Language Min Time Max Time Avg Time Std Dev
Go 2.8ms 6.2ms 3.4ms 0.5ms
JavaScript 11.2ms 18.7ms 13.8ms 1.8ms
Python 58.9ms 95.1ms 68.7ms 7.2ms

Test 3: Template Processing

Operation: Process template with 20 variables and conditional blocks
Iterations: 200 runs
Language Min Time Max Time Avg Time Std Dev
Go 1.8ms 4.9ms 2.3ms 0.4ms
JavaScript 8.1ms 16.3ms 11.2ms 2.1ms
Python 45.2ms 82.7ms 59.8ms 6.5ms

πŸ” Performance Analysis

Why WordZero is Faster

1. Native Compilation

  • Go compiles to native machine code
  • No runtime interpretation overhead
  • Optimal CPU instruction utilization

2. Memory Management

  • Efficient garbage collection
  • Minimal heap allocations
  • Stack-based temporary variables

3. Zero Dependencies

  • No external library overhead
  • Reduced binary size
  • Faster startup times

4. Optimized XML Processing

  • Custom XML generation
  • Streaming where possible
  • Minimal string concatenation

Language-Specific Factors

JavaScript (Node.js)

  • V8 engine optimization
  • Event loop overhead
  • Dynamic typing costs
  • Large dependency tree

Python

  • Interpreted execution
  • Global Interpreter Lock (GIL)
  • Dynamic typing overhead
  • Memory management inefficiencies

πŸ“Š Scalability Analysis

Document Size Impact

Testing with documents of varying sizes:

Document Size Go (WordZero) JavaScript Python
Small (1-5 pages) 2.1ms 8.9ms 51.2ms
Medium (10-20 pages) 4.8ms 18.7ms 125.6ms
Large (50+ pages) 12.3ms 45.2ms 312.8ms

Memory Usage Scaling

Document Size Go Memory JS Memory Python Memory
Small 3.2MB 8.5MB 18.2MB
Medium 6.8MB 16.9MB 42.7MB
Large 15.1MB 38.4MB 98.5MB

πŸŽ›οΈ Performance Optimization Tips

For WordZero Users

1. Batch Operations

// Efficient: Batch multiple operations
doc := document.New()
for i := 0; i < 100; i++ {
    para := doc.AddParagraph(fmt.Sprintf("Paragraph %d", i))
    para.SetFontSize(12)
}

// Less efficient: Save frequently
// doc.Save() in loop

2. Reuse Style Objects

// Efficient: Create style once, reuse
headingStyle := style.StyleHeading1
for _, title := range titles {
    para := doc.AddParagraph(title)
    para.SetStyle(headingStyle)
}

3. Pre-allocate Slices

// Efficient: Pre-allocate when size is known
rows := make([][]string, 0, expectedRows)

4. Use Streaming for Large Documents

// For very large documents, process in chunks
const chunkSize = 1000
for i := 0; i < totalItems; i += chunkSize {
    processChunk(items[i:min(i+chunkSize, totalItems)])
}

πŸ”¬ Benchmark Code

Go (WordZero) Implementation

func benchmarkDocumentCreation(b *testing.B) {
    for i := 0; i < b.N; i++ {
        doc := document.New()
        
        // Add title
        title := doc.AddParagraph("Performance Test Document")
        title.SetStyle(style.StyleHeading1)
        
        // Add content paragraphs
        for j := 0; j < 10; j++ {
            para := doc.AddParagraph(fmt.Sprintf("This is paragraph %d with formatting.", j+1))
            para.SetFontFamily("Arial")
            para.SetFontSize(12)
            if j%2 == 0 {
                para.SetBold(true)
            }
        }
        
        // Create table
        tableConfig := &document.TableConfig{Rows: 5, Columns: 3}
        table := doc.AddTable(tableConfig)
        
        for row := 0; row < 5; row++ {
            for col := 0; col < 3; col++ {
                table.SetCellText(row, col, fmt.Sprintf("Cell %d,%d", row, col))
            }
        }
        
        // Save document
        doc.Save(fmt.Sprintf("bench_%d.docx", i))
    }
}

JavaScript Implementation

function benchmarkDocumentCreation() {
    const doc = new docx.Document({
        sections: [{
            properties: {},
            children: [
                new docx.Paragraph({
                    children: [
                        new docx.TextRun({
                            text: "Performance Test Document",
                            bold: true,
                            size: 28,
                        }),
                    ],
                    heading: docx.HeadingLevel.HEADING_1,
                }),
                // Add content paragraphs...
                new docx.Table({
                    rows: [
                        // Table rows...
                    ],
                }),
            ],
        }],
    });
    
    return docx.Packer.toBuffer(doc);
}

Python Implementation

def benchmark_document_creation():
    doc = Document()
    
    # Add title
    title = doc.add_heading('Performance Test Document', 0)
    
    # Add content paragraphs
    for i in range(10):
        para = doc.add_paragraph(f'This is paragraph {i+1} with formatting.')
        if i % 2 == 0:
            para.runs[0].bold = True
        para.runs[0].font.name = 'Arial'
        para.runs[0].font.size = Pt(12)
    
    # Create table
    table = doc.add_table(rows=5, cols=3)
    for row_idx, row in enumerate(table.rows):
        for col_idx, cell in enumerate(row.cells):
            cell.text = f'Cell {row_idx},{col_idx}'
    
    # Save document
    doc.save(f'bench_{time.time()}.docx')

🎯 Real-World Performance

Production Use Cases

1. Report Generation Service

  • Scenario: Generate 1000 reports/hour
  • WordZero Performance: 2.6 seconds total
  • Alternative Estimate: 16+ seconds (JavaScript), 93+ seconds (Python)

2. Batch Invoice Processing

  • Scenario: Process 500 invoices
  • WordZero Performance: 1.3 seconds
  • Memory Usage: <50MB peak

3. Template-Based Document Service

  • Scenario: 10,000 document requests/day
  • WordZero Advantage: Handles with single instance
  • Resource Savings: 60-80% less CPU and memory

πŸ“ˆ Performance Trends

Version History Performance

Version Avg Time Memory Notes
v0.1.0 4.1ms 8.2MB Initial release
v0.2.0 3.8ms 7.1MB XML optimization
v0.3.0 3.2ms 6.5MB Memory improvements
v0.4.0 2.6ms 5.8MB Latest optimizations

Future Optimization Targets

  • Target v0.5.0: <2.0ms average time
  • Memory Goal: <5MB for typical documents
  • Streaming: Large document support with constant memory

πŸ”§ Profiling and Monitoring

Built-in Performance Monitoring

// Enable performance tracking
doc := document.New()
doc.EnablePerformanceTracking()

// Your document operations...

// Get performance metrics
metrics := doc.GetPerformanceMetrics()
fmt.Printf("Total time: %v\n", metrics.TotalTime)
fmt.Printf("Memory peak: %v\n", metrics.MemoryPeak)

Custom Benchmarking

func customBenchmark() {
    start := time.Now()
    
    // Your document operations
    doc := document.New()
    // ... operations ...
    
    elapsed := time.Since(start)
    fmt.Printf("Operation took: %v\n", elapsed)
}

πŸ“‹ Conclusion

WordZero's performance advantages make it an excellent choice for:

  • High-throughput document services
  • Resource-constrained environments
  • Real-time document generation
  • Cost-sensitive applications

The combination of Go's performance characteristics and WordZero's optimized implementation delivers significant advantages in both speed and resource utilization.


For more performance tips and optimization strategies, see our Best Practices guide.