08_property - YoshioNishimoto/sandbox GitHub Wiki
SCFãåæãããšãååè»éä¿æ°ãé»åå¯åºŠãæã«å ¥ããŸãã ãããã®å€ãçšããŠååŠçãªçŽæãçšããŠç解ããã®ã«åœ¹ç«ã€è§£æãè¡ãããšãã§ããŸãã ããã§ã¯ä»¥äžã®èšç®ãè¡ã£ãŠã¿ãŸãã
- äºæ¥µåã¢ãŒã¡ã³ãã»é»è·ã®èšç®
- 調åæ¯å解æ/åºæºæ¯å解æ
- å±åšåè»éã®èšç®
æ¬åœã¯ãçµå次æ°è§£æããšããã®ãè¡ãããã£ãã§ãã äŸãã°ãšãã¬ã³ã®C-HçµåãšC-Cçµåã¯ãçµå次æ°è§£æã®çµæãããã1ãš2ãããã«ãªããããªæãã§ãã ã§ãããPySCFã«ã¯ãã¶ãå®è£ ãããŠããªãããã§ãã èå³ãããæ¹ã¯å®è£ ããŠã¿ãŠãã ããïŒæŒç¿åé¡åç §ïŒã
ãããã¯SCFãçµäºããéã«åŸãããé»åå¯åºŠãçšããŠèšç®ã§ããŸãã äºæ¥µåã¢ãŒã¡ã³ãïŒdipole momentïŒã¯ããšãã«ã®ãŒã®é»å Žã«ããäžæ¬¡åŸ®åãšé¢ä¿ããŠããŸãã é»è·ã®èšç®ã«ã¯ä»»ææ§ãããæ§ã ãªé»è·ã®èšç®ææ³ïŒLöwdin population, natural population, etc.ïŒããããŸãããããã§ã¯ããªã±ã³é»è·ïŒMulliken chargeïŒã®èšç®ããŸãã
èšç®ããŸããšèšã£ãŠãïŒHF/6-31G(d)ã¬ãã«ã§ã®æ°Žååã®èšç®ïŒã
1 from pyscf import gto, scf
2
3 mol = gto.M(verbose=4,
4 atom= [["O",( 0.00000000, 0.000000000,-0.452707497)],
5 ["H",( 0.00000000, 0.866025404, 0.047292503)],
6 ["H",( 0.00000000,-0.866025404, 0.047292503)]],
7 basis="6-31g(d)")
8 mf = scf.RHF(mol)
9 mf.kernel()
10
11 mf.analyze()
11è¡ç®ã«mf.analyze()
ãšè¿œå ããããã«ããã®äžè¡ãå ããã ãã§äºæ¥µåã¢ãŒã¡ã³ããšããªã±ã³é»è·ã®èšç®ãããŠãããŸãã
åºåãšããŠã以äžãæ°ããè¿œå ãããããšæããŸãïŒå°ãçç¥ããŸããïŒã
81 **** SCF Summaries ****
82 Total Energy = -75.997330632174396
83 Nuclear Repulsion Energy = 8.772355978237027
84 One-electron Energy = -122.366294682993427
85 Two-electron Energy = 37.596608072582001
86 **** MO energy ****
87 MO #1 energy= -20.552158479917 occ= 2
88 MO #2 energy= -1.30827382185148 occ= 2
89 MO #3 energy= -0.706529305689577 occ= 2
...
102 MO #16 energy= 2.09223592458353 occ= 0
103 MO #17 energy= 2.63334045043919 occ= 0
104 MO #18 energy= 2.82729997931672 occ= 0
105 ** Mulliken pop on meta-lowdin orthogonal AOs **
106 ** Mulliken pop **
107 pop of 0 O 1s 1.99999
108 pop of 0 O 2s 1.63618
109 pop of 0 O 3s 0.00252
...
122 pop of 1 H 2s 0.01356
123 pop of 2 H 1s 0.65765
124 pop of 2 H 2s 0.01356
125 ** Mulliken atomic charges **
126 charge of 0O = -0.65758
127 charge of 1H = 0.32879
128 charge of 2H = 0.32879
129 Dipole moment(X, Y, Z, Debye): -0.00000, -0.00000, 1.95461
äºæ¥µåã¢ãŒã¡ã³ããšããªã±ã³é»è·ä»¥å€ã«ãå€ãã®è¡ã衚瀺ãããŠããããã£ãããªã®ã§ç°¡åã«èª¬æããŠãããŸãã 84è¡ç®ã®äžé»åãšãã«ã®ãŒïŒé»åã®éåãšãã«ã®ãŒãšé»åãšååæ žã®çžäºäœçšïŒã¯
85è¡ç®ã®äºé»åãšãã«ã®ãŒïŒé»åãšé»åã®çžäºäœçšïŒã¯
ã§èšç®ããŠãããšæãããŸãã
ããããããã«ããã¢ã³äžã®äžé»åã»äºé»åæŒç®åã®æåŸ
å€ã«å¯Ÿå¿ããŠããŸãã
ããããelectronic energy ã¯äºé
ã®åã«ãªããŸããã
éåžžã¯å
šãšãã«ã®ãŒïŒTotal Energy
; é»åãšãã«ã®ãŒ ïŒ æ žéåçºãšãã«ã®ãŒïŒã䜿ã£ãŠè§£æã»è°è«ãããŸãã
é»åçžé¢ãå«ããå Žåã¯ãåœç¶é»åçžé¢ãšãã«ã®ãŒãå«ããå¿
èŠããããŸãïŒååç
§é»åçžé¢çè«åç
§ïŒã
ã¡ãªã¿ã«DFTã®å Žåã¯
**** SCF Summaries ****
Total Energy = -76.361008266082152
Nuclear Repulsion Energy = 8.772355978237027
One-electron Energy = -122.441711847168946
Two-electron Coulomb Energy = 46.594772749151062
DFT Exchange-Correlation Energy = -9.286425146301301
ãšããããã«ãDFTã®äº€æçžé¢ãšãã«ã®ãŒïŒDFT Exchange-Correlation Energy
ïŒãå ããããŸãã
ãŸããäºé»åãšãã«ã®ãŒã§ã¯ãªããäºé»åã¯ãŒãã³ãšãã«ã®ãŒïŒTwo-electron Coulomb Energy
; äºé»åãšãã«ã®ãŒã®åŒã§ããã£ãå
ã®äžé
ç®ïŒã«ãªããŸãã
åºæ¬çã«ãããã®ãšãã«ã®ãŒã®åã¯Total Energy
ã§è¡šç€ºãããŠããã®ã§ééããããšã¯ãªããšæããŸããã
ã©ã®ããã«ãšãã«ã®ãŒãèšç®ãããŠãããã»ã©ã®ãšãã«ã®ãŒãå¯äžããŠããããææ¡ããŠããããšã¯éèŠãšæããŸãã
87ãã104è¡ç®ã§ãè»éãšãã«ã®ãŒïŒåååäœïŒãšè»éã®å ææ°ã瀺ããŠããŸãã ã¡ãªã¿ã«ãè»éãšãã«ã®ãŒã®åãèšç®ããŠããé»åãšãã«ã®ãŒã«ã¯ãªããŸããïŒSzabo: Section 3.3.3蟺ããåç §ïŒïŒã ååç §é»åçžé¢çè«ã®æŒç¿åé¡ã«ãããšãããè»éãšãã«ã®ãŒã®åã¯MP0ãšãã«ã®ãŒã«å¯Ÿå¿ããŸãã
ã§ãããªã±ã³é»è·ã¯126ãã128è¡ç®ã«è¡šç€ºãããŠããŸãã
é
žçŽ ååã®é»è·ã-0.65758ã§ãæ°ŽçŽ ååã0.32879ããããšããããšãåãããŸãã
é
žçŽ ååã«è² é»è·ãéãŸãã€ã¡ãŒãžããããšæããŸãã®ã§ãæ£ãããã§ãããã
ãŸããå
šãŠã®ååã®é»è·ã足ããšãŒãã«ãªããŸãïŒç³»å
šäœã§äžæ§ãšãªã£ãŠããå ŽåïŒã
ãã®åã®Mulliken pop
ïŒMulliken population; 107ãã124è¡ç®ïŒã¯ã
ããããã®ååè»éã«äœåã®é»åãå
¥ã£ãŠãããã衚瀺ãããŸãã
å
æ®»ã«åœããOååã®1sã¯ã»ãšãã©2åã®é»åã«å æãããŠããããšãã
äžè¬çã«ãã䟡é»åã®è»éå€ïŒãšèšãã°è¯ãã®ãåãããŸãããïŒã®3sã¯ã»ãšãã©å æãããŠããªãããšãåãããŸãã
ãŸããOååã¯1s,2s,2pè»éã ãã§è¯ãããšæãããããã¯ãå°ããšã¯èšãdè»éãçšããŠæ°Žååã®é»åç¶æ
ãè¡šçŸããŠããããšã«æ³šæããŠãã ããã
ãã®ãå°ããã®ããã«ãå極è»éã䜿ã£ãŠããããã§ãã
ãããŠæåŸã®è¡ã«äºæ¥µåã¢ãŒã¡ã³ãã衚瀺ãããŸãã åäœã¯ããã€ã§ãã ãã®æ°Žååã¯xå¹³é¢ã«é 眮ããŠãããããx軞æ¹åã®äºæ¥µåã¢ãŒã¡ã³ãã¯ãŒãã«ãªããŸãã y軞æ¹åãã察称æ§ãããŒãã«ãªããŸãã äžæ¹ã§ãz軞ã¯C2軞ã«æ²¿ã£ãŠãããããäºæ¥µåã¢ãŒã¡ã³ãã®å€ã¯å€§ãããªããŸãã
ã§ãããMulliken populationãMulliken chargeã¯ãGAMESS-USã®å€ãšããªãéãã®ã§ã äžè¬çãªèšç®ã¢ã«ãŽãªãºã ãšã¯å°ãéãæããããŸãã PySCFã«ã¯ããªã±ã³é»è·ä»¥å€ã§ãèšç®ã§ããã®ã§ãæ°ã«ãªãæ¹ã¯ããããè©ŠããŠã¿ãŠãã ããã
調åæ¯å解æïŒharmonic vibrational frequency analysis?ïŒãŸãã¯åºæºæ¯å解æïŒnormal mode analysisïŒãããŠã¿ãŸãã æ§é æé©åã®ãšããã§è§Šãããšããã æ§é æé©ååŸã®æ§é ã«å¯ŸããŠïŒåãèšç®ã¬ãã«ã§ïŒãããã®è§£æãè¡ãããšã§ã ãã®æ¥µå€ã®æ§è³ªãç¥ãããšãã§ããŸãã ããªãã¡ãå®å®æ§é ã«ãªã£ãŠããããéç¹ïŒãããŠããsaddle pointïŒã«ãªã£ãŠããããåãããŸãã åºæºæ¯å解æã®çµæãã¢ãŒãã®æ³¢æ°ãè² ã«ãªã£ãŠããå Žåã¯ããã®ã¢ãŒãã«å¯ŸããŠããã³ã·ã£ã«ãšãã«ã®ãŒé¢ã¯äžã«åžãšãªããŸãã ç¹ã«ãæ³¢æ°ãè² ã«ãªãã¢ãŒãã®æ°ãäžã€ã®å Žåããã®æ¥µå€ã®ããšããé·ç§»ç¶æ ïŒtransition stateïŒããšèšã£ããããŸãã å¿ ãããæ¯ååºæºæ¯å解æãè¡ãå¿ èŠãããããã§ã¯ãªãã§ãããååŠåå¿ãæ±ãå Žåã¯è§£æãè¡ãããšãäžè¬çã§ãã å®å®æ§é ã»éç¹ã«ãªã£ãŠããããšã確èªããã®ãäžã€ã®ç®çã§ãããå€ãã®ååŠåå¿ã¯ã®ããºãšãã«ã®ãŒãçšããŠè°è«ãããããã®ããºãšãã«ã®ãŒãèšç®ãããšããç®çããããŸãã
ãªããäžè¬çã«ã¯æ§é æé©åãããåŸã§åºæºæ¯å解æãè¡ããŸãã 極å€ã®æ§è³ªãç¥ããšããäºããããŸãããç±ååŠéã®èšç®ã§äžæ¬¡åŸ®åããŒãã«ãªã£ãŠãããšããè¿äŒŒãçšããŠããïŒãããïŒãšããçç±ããããŸãã ã§ãããé·ç§»ç¶æ ã®èšç®ãå§ããåã«ãåææ§é ãé·ç§»ç¶æ ã«ååè¿ããããè² ã«ãããæ¯åã¢ãŒããååšããããªã©ã確èªããã®ã«çšããŸãã ãŸããäºæ¬¡åŸ®åãããã°ã©ã ã«æž¡ããŠãããšãæ§é æé©åãã¹ã ãŒãºã«ã§ããããšãããã®ã§ããã®ãããªäœ¿ãæ¹ããããŸãã
ãšããããèšç®ããŠã¿ãŸãã
1 from pyscf import gto, scf
2 from pyscf.hessian import thermo
3
4 mol = gto.M(verbose=4,
5 atom= [["C",( 0.0000000000, -0.0000000000, -0.6758096762)],
6 ["C",( 0.0000000000, 0.0000000000, 0.6415100439)],
7 ["H",(-0.0000000000, 0.9144074968, -1.2427442213)],
8 ["H",( 0.0000000000, -0.9144074968, -1.2427442213)],
9 ["H",( 0.0000000000, 0.9144074968, 1.2084445889)],
10 ["H",(-0.0000000000, -0.9144074968, 1.2084445889)]],
11 basis="6-31G(d)")
12 mf = scf.RHF(mol)
13 mf.kernel()
14
15 hessian = mf.Hessian().kernel()
16
17 # Frequency analysis
18 freq_info = thermo.harmonic_analysis(mf.mol, hessian)
19
20 print('freq_wavenumber')
21 print(freq_info['freq_wavenumber'])
22
23 print('norm_mode')
24 print(freq_info['norm_mode'])
25
26 # Thermochemistry analysis at 298.15 K and 1 atmospheric pressure
27 thermo_info = thermo.thermo(mf, freq_info['freq_au'], 298.15, 101325)
28
29 print('Rotation constant')
30 print(thermo_info['rot_const'])
31
32 print('Zero-point energy')
33 print(thermo_info['ZPE' ])
34
35 print('Internal energy at 0 K')
36 print(thermo_info['E_0K' ])
37
38 print('Internal energy at 298.15 K')
39 print(thermo_info['E_tot' ])
40
41 print('Enthalpy energy at 298.15 K')
42 print(thermo_info['H_tot' ])
43
44 print('Gibbs free energy at 298.15 K')
45 print(thermo_info['G_tot' ])
46
47 print('Heat capacity at 298.15 K')
48 print(thermo_info['Cv_tot'])
15è¡ç®ã§ãšãã«ã®ãŒã®äºæ¬¡åŸ®åãèšç®ããŠããŸãã
ãã®äºæ¬¡åŸ®åãè¡åã®åœ¢ã«ãããã®ïŒããã»è¡åãšèšããŸãïŒãã
確ãååã®éãã§ã¹ã±ãŒã«ããŠã察è§åããããšã§åºæºæ¯åãåŸãŸãã
ãããã®æäœãã18è¡ç®ã§è¡ã£ãŠããŸãã
äºæ¬¡åŸ®åã®èšç®ã«ã¯coupled-perturbed Hartree--Fockãšããæ¹çšåŒã解ããŠããŸãïŒSzabo: Appendix Cåç
§ãäºæ¬¡åŸ®åã®èšç®ã«ã¯ååè»éä¿æ°ã®äžæ¬¡åŸ®åãå
¥ã£ãŠããããïŒã
ããäœãåºåãã¡ã€ã«ã«ã¯verbose
ã®å€ã«é¢ãããäºæ¬¡åŸ®åã®è©³çŽ°ã¯äœã衚瀺ãããªãããã§ãã
ãããããŠverbose=6
ã«ãããšãèšç®ã¹ãããæ¯ã®èšç®æéã衚瀺ãããããã§ããã
ãŸãèŠãŠããã¹ãã¯ãfreq_info['freq_wavenumber']
ã§ãããã
åºåãšããŠã897.13ããå§ãŸã12åã®å€ãåŸããããšæããŸãã
freq_wavenumber
[ 897.13109677 1094.4184838 1098.31443855 1154.53183132 1352.73429729
1496.50475888 1611.13761947 1856.79461874 3318.44199556 3342.02072501
3392.84414439 3419.02324224]
ãããã¯12åïŒãªã12åã§ãããïŒïŒã®åºæºæ¯åããããã®ãæ³¢æ°ïŒåäœã¯cm-1ïŒãè¡šããŠããŸãã
ããããã©ããã®ææ¥ã§å匷ãããšæããŸããã3,000 cm-1以äžã®æ¯åã¯ãæ°ŽçŽ ååïŒããã§ã¯C-HïŒã®äŒžçž®æ¯åã«å¯Ÿå¿ããŠããã ãšããããšãåããããšæããŸãã
ãããã¯ãåºæºæ¯åã¢ãŒãïŒprint(freq_info['norm_mode'])
ïŒãMOLDENãã¡ã€ã«ãšãã«ãã³ããã
å¯èŠåãœãããŠã§ã¢ã§èŠãããšãåºæ¥ãã°è¯ãã®ã§ããPySCFã§ã¯ã§ããªãæãïŒïŒããããæ°ãå©ããªãïŒ
27è¡ç®ã§ã¯ãç±ååŠçãªè§£æãè¡ã£ãŠããŸãã
thermo.thermo
ã®äžã€ç®ã»åã€ç®ã®åŒæ°ãšããŠæå®ããŠãããšãããããã§ã¯298.15 Kã1 atmã§ã®çµæã衚瀺ããŠãããŸãã
æ§é æé©åèšç®ã§åŸãããæ§é ã»ãšãã«ã®ãŒã¯ã
ããã³ã·ã£ã«ãšãã«ã®ãŒé¢ã§ã®æ¥µå°å€ïŒããªãã¡ãŒãç¹ãšãã«ã®ãŒã¯ç¡èŠãããŠããïŒãšãªããŸãã
ã§ãããéåååŠã®ææ¥ã§å匷ãããšæãããããã«ãå®éã®ååã¯0 Kã§ãã£ãŠããŒãç¹ãšãã«ã®ãŒãå«ãã§ããã®ã§ããã®è£æ£ãããªããã°ãªããªãå ŽåããããŸãã
äŸãã°ææ©ååŠã®åå¿ãæ±ãå Žåãå®éšå€ãšæ¯èŒãè¡ãå Žåã«ã¯ãŒãç¹ãšãã«ã®ãŒïŒãšã®ããºãšãã«ã®ãŒã®è£æ£ïŒãå«ããäºãå€ãã§ãã
ãã®ãŒãç¹ãšãã«ã®ãŒãããã®ååã§ã¯
213 Zero-point energy
214 (0.05475324671888602, 'Eh')
ããªãã¡0.05475... hartreeãšãªããŸãã
ãããŠã0 Kã®å
éšãšãã«ã®ãŒïŒInternal energy at 0 K
ïŒã¯ã
SCFã§åŸããããšãã«ã®ãŒã«ãŒãç¹ãšãã«ã®ãŒã足ãããã®ãšãªã£ãŠããŸãã
ããã«æé枩床ïŒããã§ã¯298.15 Kã§ã®ïŒäžŠé²ã»å転ã»æ¯åã®å¯äžãå«ããå
éšãšãã«ã®ãŒïŒInternal energy at 298.15 K
ïŒãã
ãšã³ã¿ã«ããŒïŒEnthalpy energy...
ïŒã»ã®ããºèªç±ãšãã«ã®ãŒïŒGibbs free energy...
ïŒãåŸãããšãã§ããŸãã
ã¡ãªã¿ã«ãããã®Heat capacity at 298.15 K
ã¯ãã¢ã«å®å®¹ïŒå®ç©ïŒç±å®¹éã®ããã§ãïŒGAMESS-USãšã®æ¯èŒããïŒã
ååŠåå¿ãè°è«ãããšãã¯ãã®ããºïŒèªç±ïŒãšãã«ã®ãŒãçšããã®ãæ®éã§ãã çšããªãå ŽåããããŸãã äºæ¬¡åŸ®åã®èšç®ã¯ãããªãã«æéãããããã ç³»ã倧ãããšè«Šãããããå ŽåããããšæãããŸããã ãŒãç¹æ¯åè£æ£ã®åœ±é¿ã¯ããªã倧ããå Žåãããã®ã§ããŸãç¡èŠãããã¯ãªãã§ãã SCFãšãã«ã®ãŒã䜿ã£ãŠãã®ããºïŒèªç±ïŒãšãã«ã®ãŒã䜿ã£ãŠã倧ããªå·®ããªãããšãå€ãã®ã§ããã ååã®æ°ãå€ããå Žåã¯10 kcal/mol以äžïŒæž©åºŠæ¬¡ç¬¬ïŒå€åãããã泚æããå¿ èŠããããŸãã è«æãªã©ã§å ±åãããšãã«ã®ãŒããããã®è£æ£ãå«ãŸãªãå Žåãå€ãã®ã§ããã åå¿æ©æ§ã«é¢ããè«æã§ã¯ãã®ããºïŒèªç±ïŒãšãã«ã®ãŒãçšããã®ãåºæ¬ã§ãã
æè¿ã®ç±ååŠã»ç©çååŠã®æç§æžã§ã¯ãã®ããºãšãã«ã®ãŒãã»ããã«ã ãã«ããšãã«ã®ãŒããšæžãããã«ãªã£ãŠããŠããŸããã éåååŠèšç®ããã°ã©ã ã§ã¯ãã®ããºèªç±ãšãã«ã®ãŒãã»ããã«ã ãã«ãèªç±ãšãã«ã®ãŒããšæžãæ¹ãå€ãã§ãã ãã®ãããã®èšç®ã«ãŒãã³ã¯æã«æžãããããã°ã©ã ãããŒã¹ã«ããŠããããšãå€ãæ°ãããã®ã§ã
éåžžã®ååè»éïŒcanonical orbitalïŒã¯ããã©ãã¯è¡åã察è§åããããšã«ããåŸãããè»éã§ãã ããããã®ååè»éã¯çŽäº€åããŠããããšããããå±èµ·ç¶æ èšç®ãé»åçžé¢ã®èšç®ãããããããšããã¡ãªããããããŸããã å€ãã®å Žåããã€ãã®ååã«ãŸããã£ãŠé»åå¯åºŠãååžãããããèŠèŠçã«ããåããã¥ãããšããå ŽåããããŸãã äžæ¹ãå±åšåè»éïŒlocalized orbitalïŒã¯ã canonical orbitalãå転ïŒä»ã®è»éãšæ··ãããšè¡šçŸããŠãè¯ãããŸãããŠãã¿ãªãŒå転ïŒãããããšã«ãããäŸãã°Ïè»éäžã€ã«å±åšåããããããªååè»éãšãªããŸãã å±åšåè»éã¯ãéåžžå æè»éã«å¯ŸããŠããåŸãããŸããïŒéå æè»éã§ãæ¬äŒŒçã«å±åšåè»éãã€ããæ¹æ³ããããŸãïŒã ãŸããçŽäº€ããŠããããã§ã¯ãããŸããã ãã®ããå±åšåè»éãçšããpost-HFèšç®ã¯ãããããé£ãããªããŸãã
PySCFã§ã¯ã次ã®å±åšåã¢ã«ãŽãªãºã ãå®è£ ãããŠããããã§ãïŒè©³çŽ°ã¯ããåãããŸãããïŒã
- Foster--Boys
- Edmiston--Ruedenberg
- Pipek--Mezey
- meta-Löwdin
- natural atomic orbitals
- intrinsic atomic orbitals
- intrinsic bond orbitals
ããã§ã¯Pipek--Mezey orbital localizationãçšããŸãã ããããçŸä»£çã«ã¯æããã䜿ãããæ¹æ³ã§ãCASSCFã®åæè»éãäœæããã®ã«çšããå ŽåããããŸãã
以äžã§ããã£ãœãèšç®ãã§ããŸãïŒããGAMESSã®çµæãšåããªãã å±åšåã¯äžæã«æ±ºãŸãããã§ã¯ãªãã®ã§ã©ã¡ããæ£ãããããããªããã ããã§ã以äžãæ£ãããã¯æªããã Pipek--Mezeyã¯Ïè»éãšÏè»éãæ··ãããèšç®ã§ããã¡ãªãããããã¯ããªã®ã«ããããã§ããŠããªããïŒ ã
1 from pyscf import gto, scf
2
3 mol = gto.M(verbose=4,
4 atom= [["C",( 6.00888796e-13,-5.21236125e-14,-1.27727822e+00)],
5 ["C",(-5.73985844e-13, 1.59017062e-14, 1.21246132e+00)],
6 ["H",(-2.61455155e-13, 1.72747100e+00,-2.34915037e+00)],
7 ["H",(-6.70150000e-14,-1.72747100e+00,-2.34915037e+00)],
8 ["H",( 2.48003679e-13, 1.72747100e+00, 2.28433346e+00)],
9 ["H",( 5.35635242e-14,-1.72747100e+00, 2.28433346e+00)]],
10 basis="6-31g(d)",unit="Bohr")
11 mf = scf.RHF(mol)
12 mf.kernel()
13
14 import numpy
15 from pyscf import lo
16 class HubbardPM(lo.pipek.PM):
17 # Construct the site-population tensor for each orbital-pair density.
18 # This tensor is used in cost-function and its gradients.
19 def atomic_pops(self, mol, mo_coeff, method=None):
20 return numpy.einsum('pi,pj->pij', mo_coeff, mo_coeff)
21
22 loc_orb_init_guess = mf.mo_coeff[:,0:8]
23 #mol.verbose = 5
24 locobj = HubbardPM(mol, loc_orb_init_guess)
25 print('PM cost function ', locobj.cost_function())
26 loc_orb = locobj.kernel()
27 print('PM cost function ', locobj.cost_function())
28
29 print (loc_orb)
30
31 from pyscf.tools import molden
32 with open('C2H4mo.molden', 'w') as f1:
33 molden.header(mol, f1)
34 molden.orbital_coeff(mol, f1, loc_orb, ene=mf.mo_energy, occ=mf.mo_occ)
ããã§åºåãããŠããC2H4mo.molden
ãçšããŠå±åšåè»éãå¯èŠåããŠã¿ãŸãããã
æ£ãããåãããŸãããã
ãªããå±åšåè»éã«è»éã®æºäœïŒè»éãšãã«ã®ãŒïŒãå®çŸ©ããããšã¯ã§ããŸããã
å¯èŠåããéã«è»éãšãã«ã®ãŒã衚瀺ããããããããŸãããã䟿å®äžå
ã®canonicalè»éã®çªå·ãšå¯Ÿå¿ããŠè¡šç€ºããããã«ããŠããã ãã§ãã
åºæ¬çãªè§£æã¯ä»¥äžã®ãããªæãã§ããããã ãšãã«ã®ãŒãããã«åŸ®åãããšããããåãããŸãã äŸãã°ããšãã«ã®ãŒãååã®åº§æšãšé»å Žã§ïŒæ··åïŒåŸ®åããŠåŸãããå€ïŒdipole derivativeïŒãæ¯åã¢ãŒãã«å°åœ±ããããããããããšãIRã¹ãã¯ãã«ãã·ãã¥ã¬ãŒã·ã§ã³ããããšãã§ããŸãã ä»ã«ããšãã«ã®ãŒãé»å Žã§äžæ¬¡åŸ®åãããšãè¶ å極çãåŸãããšãã§ããæ¯åã¢ãŒãã«å°åœ±ãããšéå ±é³Žã©ãã³ã¹ãã¯ãã«ã®ã·ãã¥ã¬ãŒã·ã§ã³ãããããšãã§ããŸãã PySCFã§ã¯ã§ããªã解æææ³ãç¡æ°ã«ååšãããããèå³ãããã°ãããã調ã¹ãŠå®è£ ããŠã¿ãŠãã ããã
- ããªã±ã³é»è·ãšäºæ¥µåã¢ãŒã¡ã³ãã®åºåºé¢æ°äŸåæ§ãŸãã¯æ±é¢æ°äŸåæ§ã調ã¹ãŠã¿ãŸãããã
- å±åšåè»éã®èšç®ã¯ãå æè»éã®ååè»éä¿æ°ã«é©åãªãŠãã¿ãªãŒè¡åããããããšã§èšç®ãè¡ããŸãã éåžžã®ååè»éãçšããŠèšç®ãããšãã«ã®ãŒãšãå±åšåè»éãçšããŠèšç®ãããšãã«ã®ãŒãäžèŽããããšã蚌æããŸãããã Hartree--Fockã®ãšãã«ã®ãŒã䜿ãã°è¯ãã§ãã
- é©åœãªååã®åºæºæ¯å解æãè¡ãïŒææ³ã¯ä»»æïŒãæç®ïŒå®éšã§ãèšç®ã§ãè¯ãã§ãïŒã調ã¹ãŠæ³¢æ°ãæ¯èŒããŠãã ããã
- æ°Žååäºéäœãæ§é æé©åããŸãããïŒææ³ã¯ä»»æïŒã åºæºæ¯å解æãè¡ããæ¯åã®æ³¢æ°ãå®æ°ã§ããããšã確èªããŸãããã çµåãšãã«ã®ãŒãæšæºç¶æ ã«ãããäºéåããéã®å éšãšãã«ã®ãŒå€åã»ãšã³ã¿ã«ããŒå€åã»ã®ããºèªç±ãšãã«ã®ãŒå€åãèšç®ããŠã¿ãŸãããã å®æž©ã»å®å§ç¶æ³äžã§æ°Žååã®äºéäœã¯èªçºçã«èµ·ããã§ããããã
- HF/STO-3Gã¬ãã«ã§æ¬¡ã®æ§é ïŒ1,3-butadiene + ethyleneïŒã®æ¯å解æãè¡ã£ãŠã¿ãŸãããã
ãã®æ§é ã¯ããã³ã·ã£ã«ãšãã«ã®ãŒé¢ã§ã©ã®ãããªæ¥µå€ã«çžåœããã§ããããã
freq_wavenumber
äžã®"j"ã¯ãè€çŽ æ°iã®ããšã§ãã
C -0.1211293313 -0.4457163427 -1.4171647487
C -1.2739856967 -0.3091329584 -0.7145497446
C 1.0503510908 1.2853077067 -0.6792479073
H -2.1635703465 0.0470080478 -1.2189851588
H 0.4273593840 1.9816728363 -1.2211864855
C -1.2738735849 -0.3132249690 0.7066939692
C 1.0504420313 1.2813997884 0.6802190131
H -2.1633816132 0.0399952783 1.2133133128
H 0.4275185790 1.9746347320 1.2262340812
C -0.1209034547 -0.4538428678 1.4083288546
H -0.1195898390 -0.3353062248 2.4848381172
H -0.1199821020 -0.3209724999 -2.4929725269
H 1.9090334204 0.9219869922 -1.2249315557
H 1.9091996190 0.9149563046 1.2236916943
H 0.6961732817 -1.0393964109 -1.0372576914
H 0.6963436576 -1.0453168130 1.0248779901
çµå次æ°è§£æã§æåãªææ³ã¯ã"Wiberg bond-order analysis"ãš"Mayer bond-order analysis"ãšãã§ãããã ã©ã¡ããå¯åºŠè¡åïŒãšãåŸè ã®å Žåã¯éãªãè¡åïŒãçšããã ãã§ãå²ãšç°¡åãšæããŸãã èå³ããã人ã¯ãã£ãŠã¿ãŠãã ããã Wiberg bond-order index (for restricted wavefunction)ã¯ã次ã®èšç®ãè¡ããŸãã
AãšBã¯ååã®ã€ã³ããã¯ã¹ã§ãÎŒãšÎœã¯ååè»éã®ã€ã³ããã¯ã¹ã§ãã¯å¯åºŠè¡åã§ãã å®éã«ããã°ã©ã ããéã«ã¯ãä¿æ°çãè¥å¹²åŸ®èª¿æŽããå¿ èŠããããããããŸãããã äžæ¹Mayer bond-order indexã¯ã
ïŒãªãã\mathbfãæäœã«ãªãïŒã¯ãå¯åºŠè¡åãšéãªãè¡åã®ç©ã§ãã ããªãã¡
ã§ãããªã®ã§ãMayer bond-order indexã®æ¹ãããé¢åã§ããããããããã¡ãã®æ¹ãçŽæã«åãå€ã«ãªãã®ã§ãããã ã¡ãªã¿ã«ãäžã®æ§é ïŒ1,3-butadiene + ethyleneïŒãçšããŠMayer bond-order analysis (HF/STO-3G)ãè¡ããšãC1-C2éã¯1.633ãC1-C3éã¯0.256ãC-Héã¯å€§äœ0.97ãããã«ãªããŸãïŒæ§é å«ããGAMESS-USã«ããçµæïŒã