devboard: Jetson orin - YingkunZhou/EdgeTransformerBench GitHub Wiki

commands
cat /sys/devices/17000000.ga10b/devfreq/17000000.ga10b/max_freq
1300500000

GPU_FREQ=1300500000

sudo sh -c "echo $GPU_FREQ > /sys/devices/17000000.ga10b/devfreq/17000000.ga10b/min_freq"

如果想释放最大性能,还有一个最简单粗暴的方式: Compute time in DLA slower than expected - Jetson & Embedded Systems / Jetson AGX Orin - NVIDIA Developer Forums

$ sudo nvpmodel -m 0
$ sudo jetson_clocks

ncnn

commit id: 0ddc34f5223b634fcaa89f67634b5f88db04bfd3

cortex-A78 @ 1 thread @ 2.2GHz w/ fp16(default)
$ MODEL=ALL make run-ncnn-perf
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.781250), (index: 644,  score: 4.968750), (index: 309,  score: 4.000000), 
[191 iters] min = 103.84ms max = 108.92ms median = 105.07ms mean = 105.20ms
Creating ncnn net: efficientformerv2_s1
(index: 985,  score: 13.187500), (index: 308,  score: 4.398438), (index: 984,  score: 4.390625), 
[128 iters] min = 155.03ms max = 166.47ms median = 156.28ms mean = 156.43ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.609375), (index: 22,  score: 3.921875), (index: 80,  score: 3.523438), 
[82 iters] min = 244.02ms max = 246.07ms median = 245.13ms mean = 245.11ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 8.421875), (index: 309,  score: 2.664062), (index: 89,  score: 2.494141), 
[693 iters] min =  28.63ms max =  29.16ms median =  28.89ms mean =  28.89ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 8.257812), (index: 309,  score: 2.691406), (index: 308,  score: 2.125000), 
[376 iters] min =  52.91ms max =  53.69ms median =  53.26ms mean =  53.27ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 8.242188), (index: 557,  score: 2.316406), (index: 309,  score: 2.091797), 
[237 iters] min =  83.81ms max =  85.10ms median =  84.46ms mean =  84.46ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 8.453125), (index: 309,  score: 2.076172), (index: 113,  score: 1.410156), 
[165 iters] min = 119.43ms max = 122.06ms median = 121.65ms mean = 121.65ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.007812), (index: 308,  score: 2.257812), (index: 301,  score: 2.234375), 
[121 iters] min = 164.76ms max = 175.67ms median = 165.74ms mean = 165.91ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 8.882812), (index: 494,  score: 2.082031), (index: 309,  score: 1.867188), 
[93 iters] min = 211.94ms max = 217.23ms median = 216.52ms mean = 216.45ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 8.554688), (index: 309,  score: 2.222656), (index: 308,  score: 2.183594), 
[73 iters] min = 272.63ms max = 284.75ms median = 273.60ms mean = 274.62ms
Creating ncnn net: mobilevit_xx_small
(index: 999,  score: -nan), (index: 998,  score: -nan), (index: 997,  score: -nan), 
[1461 iters] min =  13.56ms max =  14.00ms median =  13.69ms mean =  13.69ms
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating ncnn net: resnet50
(index: 985,  score: 7.875000), (index: 113,  score: -5.207031), (index: 307,  score: -5.398438), 
[193 iters] min =  99.34ms max = 104.74ms median = 104.15ms mean = 104.14ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 9.726562), (index: 310,  score: 2.718750), (index: 308,  score: 2.394531), 
[1541 iters] min =  12.87ms max =  13.25ms median =  12.98ms mean =  12.99ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 9.734375), (index: 309,  score: 2.583984), (index: 310,  score: 2.402344), 
[617 iters] min =  31.53ms max =  32.65ms median =  32.45ms mean =  32.45ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 9.687500), (index: 309,  score: 2.289062), (index: 310,  score: 2.222656), 
[418 iters] min =  47.47ms max =  48.20ms median =  47.84ms mean =  47.85ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 10.023438), (index: 883,  score: 2.632812), (index: 309,  score: 2.167969), 
[293 iters] min =  68.14ms max =  68.78ms median =  68.42ms mean =  68.43ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.210938), (index: 955,  score: 2.845703), (index: 310,  score: 2.222656), 
[171 iters] min = 116.51ms max = 117.56ms median = 117.13ms mean = 117.15ms
GPU Vulkan @ 1.3GHz w/ fp32
INFO: Using Vulkan backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
opt status: 111011101 ==> 000000001
(index: 985,  score: 11.783970), (index: 644,  score: 4.838636), (index: 108,  score: 3.926247), 
[1368 iters] min =  11.39ms max =  19.37ms median =  14.43ms mean =  14.62ms
Creating ncnn net: efficientformerv2_s1
opt status: 111011101 ==> 000000001
(index: 985,  score: 13.082937), (index: 89,  score: 4.173867), (index: 984,  score: 4.094892), 
[1162 iters] min =  13.45ms max =  22.63ms median =  16.60ms mean =  17.21ms
Creating ncnn net: efficientformerv2_s2
opt status: 111011101 ==> 000000001
(index: 985,  score: 12.511873), (index: 309,  score: 3.711616), (index: 22,  score: 3.676414), 
[719 iters] min =  22.15ms max =  34.02ms median =  27.83ms mean =  27.82ms
Creating ncnn net: mobilevitv2_050
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.305042), (index: 309,  score: 2.612881), (index: 584,  score: 2.330210), 
[1719 iters] min =   8.72ms max =  17.78ms median =  11.68ms mean =  11.64ms
Creating ncnn net: mobilevitv2_075
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.126366), (index: 309,  score: 2.389989), (index: 308,  score: 1.885907), 
[1209 iters] min =  12.82ms max =  24.75ms median =  16.50ms mean =  16.55ms
Creating ncnn net: mobilevitv2_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.254771), (index: 557,  score: 2.225800), (index: 309,  score: 1.942583), 
[793 iters] min =  16.94ms max =  31.77ms median =  24.20ms mean =  25.25ms
Creating ncnn net: mobilevitv2_125
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.281282), (index: 309,  score: 1.960415), (index: 883,  score: 1.290661), 
[693 iters] min =  19.85ms max =  35.53ms median =  26.78ms mean =  28.86ms
Creating ncnn net: mobilevitv2_150
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.099475), (index: 308,  score: 2.251911), (index: 301,  score: 2.153154), 
[637 iters] min =  24.25ms max =  40.12ms median =  31.12ms mean =  31.41ms
Creating ncnn net: mobilevitv2_175
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.900534), (index: 494,  score: 2.110982), (index: 309,  score: 1.876236), 
[517 iters] min =  32.17ms max =  45.72ms median =  37.18ms mean =  38.70ms
Creating ncnn net: mobilevitv2_200
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.531097), (index: 883,  score: 2.244244), (index: 309,  score: 2.230251), 
[455 iters] min =  36.96ms max =  50.49ms median =  43.35ms mean =  43.97ms
Creating ncnn net: mobilevit_xx_small
opt status: 111011101 ==> 000000001
(index: 785,  score: 7.877839), (index: 334,  score: 7.784947), (index: 149,  score: 7.445580), 
[530 iters] min =  29.59ms max =  64.34ms median =  36.34ms mean =  37.78ms
Creating ncnn net: resnet50
opt status: 111011101 ==> 000000001
(index: 985,  score: 7.484056), (index: 113,  score: -4.938168), (index: 310,  score: -5.258437), 
[1623 iters] min =  12.06ms max =  16.53ms median =  12.20ms mean =  12.32ms
Creating ncnn net: mobilenetv3_large_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.600928), (index: 308,  score: 2.362726), (index: 310,  score: 2.348944), 
[2319 iters] min =   5.81ms max =  12.23ms median =   8.63ms mean =   8.63ms
Creating ncnn net: tf_efficientnetv2_b0
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.552652), (index: 309,  score: 2.377691), (index: 108,  score: 2.288837), 
[1204 iters] min =  13.38ms max =  20.11ms median =  16.64ms mean =  16.62ms
Creating ncnn net: tf_efficientnetv2_b1
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.484993), (index: 861,  score: 2.249813), (index: 309,  score: 2.138905), 
[929 iters] min =  17.13ms max =  26.01ms median =  21.06ms mean =  21.54ms
Creating ncnn net: tf_efficientnetv2_b2
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.816036), (index: 883,  score: 2.518359), (index: 113,  score: 2.038458), 
[832 iters] min =  20.39ms max =  27.97ms median =  24.11ms mean =  24.05ms
Creating ncnn net: tf_efficientnetv2_b3
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.093818), (index: 955,  score: 2.889796), (index: 947,  score: 2.188510), 
[640 iters] min =  28.29ms max =  35.99ms median =  30.87ms mean =  31.25ms
GPU Vulkan @ 1.3GHz w/ fp16
$ BACK=v MODEL=ALL make run-ncnn-perf
INFO: Using Vulkan backend
INFO: Using num_threads == 1
[0 NVIDIA Tegra Orin (nvgpu)]  queueC=2[8]  queueG=0[16]  queueT=1[2]
[0 NVIDIA Tegra Orin (nvgpu)]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
[0 NVIDIA Tegra Orin (nvgpu)]  fp16-p/s/a=1/1/1  int8-p/s/a=1/1/1
[0 NVIDIA Tegra Orin (nvgpu)]  subgroup=32  basic/vote/ballot/shuffle=1/1/1/1
[0 NVIDIA Tegra Orin (nvgpu)]  fp16-matrix-16_8_8/16_8_16/16_16_16=1/1/1
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.718750), (index: 644,  score: 5.000000), (index: 954,  score: 3.851562), 
[1902 iters] min =   8.54ms max =  13.55ms median =  10.03ms mean =  10.52ms
Creating ncnn net: efficientformerv2_s1
(index: 985,  score: 13.257812), (index: 984,  score: 4.402344), (index: 308,  score: 4.296875), 
[1829 iters] min =   8.25ms max =  12.56ms median =  10.94ms mean =  10.94ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.671875), (index: 22,  score: 3.951172), (index: 80,  score: 3.574219), 
[1119 iters] min =  15.11ms max =  20.10ms median =  17.98ms mean =  17.89ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 8.414062), (index: 309,  score: 2.660156), (index: 89,  score: 2.488281), 
[2701 iters] min =   5.82ms max =  10.43ms median =   7.28ms mean =   7.41ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 8.265625), (index: 309,  score: 2.703125), (index: 308,  score: 2.126953), 
[1891 iters] min =   8.83ms max =  15.77ms median =  10.58ms mean =  10.58ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 8.242188), (index: 557,  score: 2.320312), (index: 309,  score: 2.097656), 
[1245 iters] min =  11.67ms max =  26.60ms median =  14.40ms mean =  16.07ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 8.460938), (index: 309,  score: 2.072266), (index: 113,  score: 1.417969), 
[1041 iters] min =  13.09ms max =  28.48ms median =  16.80ms mean =  19.23ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.046875), (index: 308,  score: 2.265625), (index: 301,  score: 2.246094), 
[1101 iters] min =  14.38ms max =  20.65ms median =  18.10ms mean =  18.17ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 8.921875), (index: 494,  score: 2.087891), (index: 309,  score: 1.878906), 
[1002 iters] min =  15.63ms max =  23.75ms median =  19.99ms mean =  19.97ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 8.585938), (index: 309,  score: 2.222656), (index: 308,  score: 2.183594), 
[803 iters] min =  19.13ms max =  33.22ms median =  22.63ms mean =  24.91ms
Creating ncnn net: mobilevit_xx_small
(index: 843,  score: 8.492188), (index: 369,  score: 6.578125), (index: 921,  score: 5.855469), 
[555 iters] min =  26.76ms max =  60.83ms median =  30.60ms mean =  36.08ms
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating ncnn net: resnet50
(index: 985,  score: 7.957031), (index: 113,  score: -5.222656), (index: 307,  score: -5.421875), 
[4849 iters] min =   3.60ms max =   5.06ms median =   4.28ms mean =   4.13ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 9.742188), (index: 310,  score: 2.714844), (index: 308,  score: 2.378906), 
[3514 iters] min =   4.36ms max =   7.78ms median =   5.54ms mean =   5.69ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 9.734375), (index: 309,  score: 2.589844), (index: 310,  score: 2.398438), 
[1611 iters] min =   7.24ms max =  16.44ms median =  11.87ms mean =  12.42ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 9.671875), (index: 309,  score: 2.289062), (index: 310,  score: 2.218750), 
[1393 iters] min =  10.43ms max =  19.02ms median =  14.28ms mean =  14.37ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 10.007812), (index: 883,  score: 2.636719), (index: 309,  score: 2.167969), 
[1054 iters] min =  15.22ms max =  23.41ms median =  18.36ms mean =  18.99ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.187500), (index: 955,  score: 2.855469), (index: 310,  score: 2.226562), 
[912 iters] min =  18.84ms max =  26.81ms median =  21.34ms mean =  21.94ms
GPU Vulkan @ 0.61GHz w/ fp16
INFO: Using Vulkan backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
opt status: 111011101 ==> 000000001
(index: 985,  score: 11.783970), (index: 644,  score: 4.838636), (index: 108,  score: 3.926247), 
[882 iters] min =  18.24ms max =  28.91ms median =  22.68ms mean =  22.68ms
Creating ncnn net: efficientformerv2_s1
opt status: 111011101 ==> 000000001
(index: 985,  score: 13.082937), (index: 89,  score: 4.173867), (index: 984,  score: 4.094892), 
[763 iters] min =  22.89ms max =  31.04ms median =  26.27ms mean =  26.21ms
Creating ncnn net: efficientformerv2_s2
opt status: 111011101 ==> 000000001
(index: 985,  score: 12.511873), (index: 309,  score: 3.711616), (index: 22,  score: 3.676414), 
[459 iters] min =  38.85ms max =  48.39ms median =  43.78ms mean =  43.61ms
Creating ncnn net: mobilevitv2_050
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.305042), (index: 309,  score: 2.612881), (index: 584,  score: 2.330210), 
[771 iters] min =  14.75ms max =  34.26ms median =  28.13ms mean =  25.95ms
Creating ncnn net: mobilevitv2_075
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.126366), (index: 309,  score: 2.389989), (index: 308,  score: 1.885907), 
[657 iters] min =  21.76ms max =  40.08ms median =  30.61ms mean =  30.45ms
Creating ncnn net: mobilevitv2_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.254771), (index: 557,  score: 2.225800), (index: 309,  score: 1.942583), 
[510 iters] min =  29.53ms max =  45.49ms median =  39.16ms mean =  39.23ms
Creating ncnn net: mobilevitv2_125
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.281282), (index: 309,  score: 1.960415), (index: 883,  score: 1.290661), 
[425 iters] min =  37.40ms max =  53.53ms median =  46.85ms mean =  47.15ms
Creating ncnn net: mobilevitv2_150
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.099475), (index: 308,  score: 2.251911), (index: 301,  score: 2.153154), 
[363 iters] min =  46.80ms max =  64.77ms median =  54.54ms mean =  55.14ms
Creating ncnn net: mobilevitv2_175
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.900534), (index: 494,  score: 2.110982), (index: 309,  score: 1.876236), 
[306 iters] min =  55.72ms max =  75.59ms median =  65.23ms mean =  65.47ms
Creating ncnn net: mobilevitv2_200
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.531097), (index: 883,  score: 2.244244), (index: 309,  score: 2.230251), 
[268 iters] min =  66.20ms max =  82.78ms median =  74.82ms mean =  74.90ms
Creating ncnn net: mobilevit_xx_small
opt status: 111011101 ==> 000000001
(index: 785,  score: 7.877839), (index: 334,  score: 7.784947), (index: 149,  score: 7.445580), 
[289 iters] min =  50.09ms max =  95.53ms median =  64.50ms mean =  69.27ms
Creating ncnn net: resnet50
opt status: 111011101 ==> 000000001
(index: 985,  score: 7.484056), (index: 113,  score: -4.938168), (index: 310,  score: -5.258437), 
[859 iters] min =  22.63ms max =  31.73ms median =  23.03ms mean =  23.29ms
Creating ncnn net: mobilenetv3_large_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.600928), (index: 308,  score: 2.362726), (index: 310,  score: 2.348944), 
[1398 iters] min =   9.65ms max =  16.85ms median =  14.53ms mean =  14.31ms
Creating ncnn net: tf_efficientnetv2_b0
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.552652), (index: 309,  score: 2.377691), (index: 108,  score: 2.288837), 
[699 iters] min =  23.71ms max =  34.03ms median =  28.73ms mean =  28.63ms
Creating ncnn net: tf_efficientnetv2_b1
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.484993), (index: 861,  score: 2.249813), (index: 309,  score: 2.138905), 
[561 iters] min =  31.89ms max =  40.85ms median =  35.95ms mean =  35.69ms
Creating ncnn net: tf_efficientnetv2_b2
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.816036), (index: 883,  score: 2.518359), (index: 113,  score: 2.038458), 
[504 iters] min =  36.98ms max =  44.12ms median =  39.72ms mean =  39.68ms
Creating ncnn net: tf_efficientnetv2_b3
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.093818), (index: 955,  score: 2.889796), (index: 947,  score: 2.188510), 
[396 iters] min =  45.06ms max =  55.53ms median =  50.58ms mean =  50.60ms
GPU Vulkan @ 0.61GHz w/ fp16
$ BACK=v MODEL=ALL make run-ncnn-perf
INFO: Using Vulkan backend
INFO: Using num_threads == 1
[0 NVIDIA Tegra Orin (nvgpu)]  queueC=2[8]  queueG=0[16]  queueT=1[2]
[0 NVIDIA Tegra Orin (nvgpu)]  bugsbn1=0  bugbilz=0  bugcopc=0  bugihfa=0
[0 NVIDIA Tegra Orin (nvgpu)]  fp16-p/s/a=1/1/1  int8-p/s/a=1/1/1
[0 NVIDIA Tegra Orin (nvgpu)]  subgroup=32  basic/vote/ballot/shuffle=1/1/1/1
[0 NVIDIA Tegra Orin (nvgpu)]  fp16-matrix-16_8_8/16_8_16/16_16_16=1/1/1
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.718750), (index: 644,  score: 5.000000), (index: 954,  score: 3.851562), 
[1244 iters] min =  12.55ms max =  19.16ms median =  16.22ms mean =  16.08ms
Creating ncnn net: efficientformerv2_s1
(index: 985,  score: 13.257812), (index: 984,  score: 4.402344), (index: 308,  score: 4.296875), 
[1134 iters] min =  15.07ms max =  20.52ms median =  17.75ms mean =  17.65ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.671875), (index: 22,  score: 3.951172), (index: 80,  score: 3.574219), 
[691 iters] min =  21.02ms max =  31.71ms median =  29.23ms mean =  28.95ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 8.414062), (index: 309,  score: 2.660156), (index: 89,  score: 2.488281), 
[1209 iters] min =  10.59ms max =  26.70ms median =  17.03ms mean =  16.55ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 8.265625), (index: 309,  score: 2.703125), (index: 308,  score: 2.126953), 
[892 iters] min =  13.24ms max =  32.89ms median =  21.40ms mean =  22.44ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 8.242188), (index: 557,  score: 2.320312), (index: 309,  score: 2.097656), 
[765 iters] min =  18.42ms max =  32.54ms median =  26.89ms mean =  26.16ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 8.460938), (index: 309,  score: 2.072266), (index: 113,  score: 1.417969), 
[704 iters] min =  21.63ms max =  36.27ms median =  29.05ms mean =  28.42ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.046875), (index: 308,  score: 2.265625), (index: 301,  score: 2.246094), 
[635 iters] min =  22.52ms max =  37.63ms median =  31.73ms mean =  31.50ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 8.921875), (index: 494,  score: 2.087891), (index: 309,  score: 1.878906), 
[570 iters] min =  27.41ms max =  40.24ms median =  35.56ms mean =  35.12ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 8.585938), (index: 309,  score: 2.222656), (index: 308,  score: 2.183594), 
[505 iters] min =  31.62ms max =  47.37ms median =  39.72ms mean =  39.66ms
Creating ncnn net: mobilevit_xx_small
(index: 843,  score: 8.492188), (index: 369,  score: 6.578125), (index: 921,  score: 5.855469), 
[336 iters] min =  42.00ms max =  93.06ms median =  57.01ms mean =  59.70ms
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating ncnn net: resnet50
(index: 985,  score: 7.957031), (index: 113,  score: -5.222656), (index: 307,  score: -5.421875), 
[2941 iters] min =   6.28ms max =   7.94ms median =   6.71ms mean =   6.80ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 9.742188), (index: 310,  score: 2.714844), (index: 308,  score: 2.378906), 
[1939 iters] min =   7.19ms max =  13.05ms median =  10.39ms mean =  10.32ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 9.734375), (index: 309,  score: 2.589844), (index: 310,  score: 2.398438), 
[1006 iters] min =  14.37ms max =  23.08ms median =  20.22ms mean =  19.89ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 9.671875), (index: 309,  score: 2.289062), (index: 310,  score: 2.218750), 
[786 iters] min =  20.20ms max =  28.39ms median =  25.66ms mean =  25.45ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 10.007812), (index: 883,  score: 2.636719), (index: 309,  score: 2.167969), 
[673 iters] min =  26.22ms max =  32.15ms median =  30.03ms mean =  29.75ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.187500), (index: 955,  score: 2.855469), (index: 310,  score: 2.226562), 
[571 iters] min =  30.52ms max =  38.82ms median =  35.02ms mean =  35.03ms

mnn

commit id: 32f72f4fb983a700d3c8f20549e159ee3860952b

newUnary->main.AsUnaryOp()->opType = UnaryOpOperation_GELU

cortex-A78 @ 1 thread @ 2.2GHz w/ fp32 (can use --fp16 storage to half model size)
  • --weightQuantBits 8 --weightQuantAsymmetric performance is the same.
$ MODEL=ALL make run-mnn-perf
INFO: Using CPU backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 11.768960), (index: 644,  score: 4.829375), (index: 108,  score: 3.931292), 
[507 iters] min =  38.78ms max =  41.86ms median =  39.51ms mean =  39.51ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 13.083185), (index: 89,  score: 4.154803), (index: 984,  score: 4.072508), 
[328 iters] min =  60.18ms max =  61.78ms median =  61.09ms mean =  61.05ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 12.495360), (index: 309,  score: 3.706549), (index: 22,  score: 3.682925), 
[183 iters] min = 107.63ms max = 116.75ms median = 109.36ms mean = 109.39ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 985,  score: 11.912077), (index: 883,  score: 4.997910), (index: 310,  score: 4.615772), 
[382 iters] min =  51.72ms max =  52.94ms median =  52.51ms mean =  52.47ms
Creating MNN Interpreter: SwiftFormer_S
(index: 985,  score: 12.532909), (index: 89,  score: 4.324093), (index: 720,  score: 4.182640), 
[253 iters] min =  77.47ms max =  90.70ms median =  79.01ms mean =  79.21ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 985,  score: 13.235222), (index: 309,  score: 3.921143), (index: 310,  score: 3.798431), 
[163 iters] min = 120.18ms max = 129.57ms median = 122.99ms mean = 123.16ms
Creating MNN Interpreter: EMO_1M
(index: 985,  score: 10.015739), (index: 309,  score: 4.272019), (index: 310,  score: 3.913734), 
[559 iters] min =  34.76ms max =  39.48ms median =  35.85ms mean =  35.81ms
Creating MNN Interpreter: EMO_2M
(index: 985,  score: 9.377331), (index: 309,  score: 3.261263), (index: 308,  score: 3.011570), 
[376 iters] min =  51.82ms max =  57.37ms median =  53.10ms mean =  53.23ms
Creating MNN Interpreter: EMO_5M
(index: 985,  score: 9.150205), (index: 883,  score: 2.993564), (index: 308,  score: 2.458643), 
[216 iters] min =  90.56ms max =  96.92ms median =  92.61ms mean =  92.75ms
Creating MNN Interpreter: EMO_6M
(index: 985,  score: 9.407994), (index: 883,  score: 2.236737), (index: 309,  score: 2.090058), 
[203 iters] min =  95.99ms max = 108.64ms median =  98.41ms mean =  98.64ms
Creating MNN Interpreter: edgenext_xx_small
(index: 985,  score: 10.881224), (index: 309,  score: 4.952091), (index: 310,  score: 4.636828), 
[753 iters] min =  26.02ms max =  45.65ms median =  26.54ms mean =  26.57ms
Creating MNN Interpreter: edgenext_x_small
(index: 985,  score: 9.792659), (index: 309,  score: 4.592906), (index: 308,  score: 3.815865), 
[387 iters] min =  50.83ms max =  52.18ms median =  51.82ms mean =  51.74ms
Creating MNN Interpreter: edgenext_small
(index: 985,  score: 12.166285), (index: 309,  score: 4.538562), (index: 308,  score: 4.057699), 
[191 iters] min = 102.68ms max = 109.45ms median = 104.93ms mean = 104.90ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.315649), (index: 309,  score: 2.612311), (index: 584,  score: 2.352622), 
[376 iters] min =  51.15ms max =  59.11ms median =  53.14ms mean =  53.30ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.129767), (index: 309,  score: 2.389330), (index: 308,  score: 1.880279), 
[202 iters] min =  96.38ms max = 103.02ms median =  99.56ms mean =  99.48ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.256266), (index: 557,  score: 2.220439), (index: 309,  score: 1.944910), 
[126 iters] min = 154.59ms max = 161.31ms median = 160.14ms mean = 159.77ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.281974), (index: 309,  score: 1.962234), (index: 883,  score: 1.285449), 
[87 iters] min = 225.43ms max = 234.29ms median = 233.05ms mean = 232.38ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 9.098869), (index: 308,  score: 2.259607), (index: 301,  score: 2.159089), 
[63 iters] min = 313.68ms max = 323.60ms median = 320.56ms mean = 320.31ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.888629), (index: 494,  score: 2.104702), (index: 309,  score: 1.869344), 
[48 iters] min = 405.42ms max = 427.09ms median = 417.04ms mean = 416.71ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.531386), (index: 883,  score: 2.248808), (index: 309,  score: 2.237848), 
[38 iters] min = 516.46ms max = 537.36ms median = 527.45ms mean = 527.29ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.652774), (index: 309,  score: 6.357562), (index: 308,  score: 6.236053), 
[415 iters] min =  47.08ms max =  48.79ms median =  48.33ms mean =  48.23ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 12.998943), (index: 89,  score: 6.411653), (index: 308,  score: 5.775373), 
[183 iters] min = 105.91ms max = 111.16ms median = 110.18ms mean = 109.85ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.661409), (index: 838,  score: 4.319293), (index: 309,  score: 4.076161), 
[118 iters] min = 164.35ms max = 171.28ms median = 170.29ms mean = 169.78ms
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.427715), (index: 308,  score: 3.451081), (index: 309,  score: 3.319754), 
[857 iters] min =  22.57ms max =  26.81ms median =  23.41ms mean =  23.36ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.089683), (index: 309,  score: 3.409015), (index: 113,  score: 3.385430), 
[634 iters] min =  30.66ms max =  34.24ms median =  31.66ms mean =  31.60ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.594749), (index: 308,  score: 3.186351), (index: 644,  score: 3.177884), 
[429 iters] min =  45.53ms max =  47.27ms median =  46.82ms mean =  46.72ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.363626), (index: 108,  score: 3.341140), (index: 310,  score: 2.929424), 
[256 iters] min =  75.88ms max =  79.14ms median =  78.59ms mean =  78.38ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.495943), (index: 113,  score: -4.947984), (index: 310,  score: -5.267875), 
[97 iters] min = 198.14ms max = 211.64ms median = 207.75ms mean = 207.29ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.592710), (index: 308,  score: 2.354276), (index: 310,  score: 2.337051), 
[970 iters] min =  19.87ms max =  23.51ms median =  20.66ms mean =  20.63ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.555032), (index: 309,  score: 2.378399), (index: 108,  score: 2.289180), 
[382 iters] min =  51.22ms max =  55.02ms median =  52.41ms mean =  52.44ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.484729), (index: 861,  score: 2.258651), (index: 309,  score: 2.134489), 
[250 iters] min =  77.32ms max =  91.73ms median =  80.07ms mean =  80.25ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 9.816973), (index: 883,  score: 2.518728), (index: 113,  score: 2.046238), 
[176 iters] min = 111.19ms max = 114.97ms median = 114.26ms mean = 114.01ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.089290), (index: 955,  score: 2.892854), (index: 947,  score: 2.188154), 
[102 iters] min = 190.57ms max = 198.25ms median = 196.82ms mean = 196.21ms
cortex-A78 @ 1 thread @ 2.2GHz w/ fp32 + UnaryOpOperation_GELU_STANDARD
$ MODEL=ALL make run-mnn-perf
INFO: Using CPU backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 11.719770), (index: 644,  score: 4.952458), (index: 309,  score: 3.830817), 
[219 iters] min =  90.68ms max =  91.94ms median =  91.44ms mean =  91.45ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 13.295982), (index: 984,  score: 4.359047), (index: 308,  score: 4.301670), 
[146 iters] min = 136.95ms max = 138.22ms median = 137.85ms mean = 137.84ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 12.611839), (index: 22,  score: 3.942058), (index: 309,  score: 3.607175), 
[89 iters] min = 223.65ms max = 225.60ms median = 224.93ms mean = 224.95ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 985,  score: 11.778864), (index: 883,  score: 4.877996), (index: 309,  score: 4.723835), 
[201 iters] min =  98.87ms max = 100.34ms median =  99.70ms mean =  99.72ms
Creating MNN Interpreter: SwiftFormer_S
(index: 985,  score: 13.011803), (index: 720,  score: 4.258768), (index: 89,  score: 4.246983), 
[146 iters] min = 136.87ms max = 138.32ms median = 137.85ms mean = 137.83ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 985,  score: 13.598293), (index: 310,  score: 4.220455), (index: 309,  score: 3.997333), 
[100 iters] min = 198.23ms max = 200.84ms median = 200.16ms mean = 200.16ms
Creating MNN Interpreter: EMO_1M
(index: 985,  score: 9.830594), (index: 309,  score: 4.371325), (index: 310,  score: 3.886370), 
[488 iters] min =  40.68ms max =  45.53ms median =  41.02ms mean =  41.05ms
Creating MNN Interpreter: EMO_2M
(index: 985,  score: 9.485299), (index: 309,  score: 3.385174), (index: 308,  score: 3.217845), 
[328 iters] min =  60.78ms max =  61.57ms median =  61.02ms mean =  61.03ms
Creating MNN Interpreter: EMO_5M
(index: 985,  score: 9.178064), (index: 883,  score: 2.810544), (index: 872,  score: 2.548738), 
[182 iters] min = 109.50ms max = 111.09ms median = 109.92ms mean = 109.99ms
Creating MNN Interpreter: EMO_6M
(index: 985,  score: 9.283857), (index: 309,  score: 2.281762), (index: 308,  score: 2.275626), 
[170 iters] min = 117.72ms max = 119.00ms median = 118.06ms mean = 118.09ms
Creating MNN Interpreter: edgenext_xx_small
(index: 985,  score: 10.566173), (index: 309,  score: 5.252524), (index: 310,  score: 4.913792), 
[401 iters] min =  49.46ms max =  50.37ms median =  49.94ms mean =  49.96ms
Creating MNN Interpreter: edgenext_x_small
(index: 985,  score: 9.699040), (index: 309,  score: 4.417048), (index: 308,  score: 3.542260), 
[201 iters] min =  99.30ms max = 100.30ms median =  99.82ms mean =  99.83ms
Creating MNN Interpreter: edgenext_small
(index: 985,  score: 12.120678), (index: 309,  score: 4.450402), (index: 308,  score: 3.965264), 
[112 iters] min = 177.46ms max = 180.01ms median = 179.21ms mean = 179.23ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.414263), (index: 309,  score: 2.655451), (index: 89,  score: 2.475034), 
[392 iters] min =  50.65ms max =  51.76ms median =  51.04ms mean =  51.05ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.283899), (index: 309,  score: 2.720386), (index: 308,  score: 2.143100), 
[207 iters] min =  96.14ms max =  97.64ms median =  96.63ms mean =  96.68ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.259032), (index: 557,  score: 2.323329), (index: 309,  score: 2.103631), 
[128 iters] min = 153.92ms max = 158.24ms median = 156.86ms mean = 156.89ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.478145), (index: 309,  score: 2.082687), (index: 113,  score: 1.427791), 
[88 iters] min = 227.73ms max = 230.29ms median = 228.36ms mean = 228.47ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 9.081184), (index: 308,  score: 2.288956), (index: 301,  score: 2.262746), 
[65 iters] min = 305.85ms max = 313.83ms median = 312.23ms mean = 312.19ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.934433), (index: 494,  score: 2.101466), (index: 309,  score: 1.884507), 
[49 iters] min = 408.15ms max = 411.20ms median = 409.12ms mean = 409.19ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.606405), (index: 309,  score: 2.243204), (index: 308,  score: 2.195781), 
[39 iters] min = 510.52ms max = 522.30ms median = 521.04ms mean = 520.82ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.430620), (index: 309,  score: 6.490894), (index: 308,  score: 6.247855), 
[427 iters] min =  46.59ms max =  47.63ms median =  46.87ms mean =  46.89ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 13.045833), (index: 89,  score: 6.823301), (index: 309,  score: 5.870656), 
[188 iters] min = 105.82ms max = 108.24ms median = 106.73ms mean = 106.76ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.438315), (index: 309,  score: 3.712325), (index: 838,  score: 3.708171), 
[121 iters] min = 160.17ms max = 167.25ms median = 165.95ms mean = 165.98ms
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.709266), (index: 308,  score: 3.568025), (index: 309,  score: 3.375846), 
[771 iters] min =  25.76ms max =  26.27ms median =  25.93ms mean =  25.94ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.346602), (index: 309,  score: 3.408503), (index: 113,  score: 3.297331), 
[570 iters] min =  34.02ms max =  35.45ms median =  35.16ms mean =  35.13ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.811327), (index: 324,  score: 3.396983), (index: 326,  score: 3.303845), 
[390 iters] min =  51.14ms max =  51.65ms median =  51.40ms mean =  51.41ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.188661), (index: 108,  score: 3.035138), (index: 309,  score: 2.935835), 
[237 iters] min =  84.30ms max =  85.13ms median =  84.46ms mean =  84.48ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.986818), (index: 113,  score: -5.246407), (index: 310,  score: -5.445824), 
[97 iters] min = 207.26ms max = 208.85ms median = 207.59ms mean = 207.69ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.726589), (index: 310,  score: 2.717164), (index: 308,  score: 2.388678), 
[963 iters] min =  20.60ms max =  21.11ms median =  20.76ms mean =  20.77ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.735810), (index: 309,  score: 2.588191), (index: 310,  score: 2.398264), 
[394 iters] min =  49.53ms max =  51.21ms median =  50.78ms mean =  50.80ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.687206), (index: 309,  score: 2.282777), (index: 310,  score: 2.219707), 
[261 iters] min =  76.44ms max =  77.43ms median =  76.77ms mean =  76.79ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 10.035254), (index: 883,  score: 2.634550), (index: 309,  score: 2.177393), 
[181 iters] min = 107.74ms max = 111.66ms median = 110.81ms mean = 110.82ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.174591), (index: 955,  score: 2.843929), (index: 310,  score: 2.220167), 
[105 iters] min = 190.84ms max = 192.60ms median = 191.46ms mean = 191.52ms
cortex-A78 @ 1 thread @ 2.2GHz w/ fp16 (can use --fp16 storage to half model size)
  • --weightQuantBits 8 --weightQuantAsymmetric performance is the same.
INFO: Using CPU backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
Creating MNN Interpreter: efficientformerv2_s0
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[953 iters] min =  20.57ms max =  30.35ms median =  20.96ms mean =  21.00ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[624 iters] min =  31.58ms max =  38.92ms median =  32.11ms mean =  32.10ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[354 iters] min =  55.72ms max =  59.22ms median =  56.57ms mean =  56.62ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[687 iters] min =  28.45ms max =  33.06ms median =  29.08ms mean =  29.12ms
Creating MNN Interpreter: SwiftFormer_S
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[475 iters] min =  41.45ms max =  42.61ms median =  42.21ms mean =  42.16ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[315 iters] min =  62.73ms max =  64.32ms median =  63.74ms mean =  63.68ms
Creating MNN Interpreter: EMO_1M
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[749 iters] min =  26.10ms max =  27.16ms median =  26.74ms mean =  26.72ms
Creating MNN Interpreter: EMO_2M
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[520 iters] min =  37.51ms max =  44.80ms median =  38.49ms mean =  38.46ms
Creating MNN Interpreter: EMO_5M
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[325 iters] min =  60.24ms max =  69.30ms median =  61.68ms mean =  61.68ms
Creating MNN Interpreter: EMO_6M
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[306 iters] min =  64.01ms max =  70.23ms median =  65.38ms mean =  65.56ms
Creating MNN Interpreter: edgenext_xx_small
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[1279 iters] min =  15.19ms max =  19.02ms median =  15.60ms mean =  15.64ms
Creating MNN Interpreter: edgenext_x_small
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[682 iters] min =  28.83ms max =  29.79ms median =  29.40ms mean =  29.36ms
Creating MNN Interpreter: edgenext_small
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[351 iters] min =  56.36ms max =  57.64ms median =  57.17ms mean =  57.11ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.265625), (index: 309,  score: 2.619141), (index: 584,  score: 2.359375), 
[514 iters] min =  38.00ms max =  42.36ms median =  38.91ms mean =  38.97ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.171875), (index: 309,  score: 2.402344), (index: 308,  score: 1.894531), 
[293 iters] min =  66.79ms max =  71.10ms median =  68.32ms mean =  68.36ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.234375), (index: 557,  score: 2.238281), (index: 309,  score: 1.943359), 
[192 iters] min = 101.93ms max = 108.67ms median = 103.96ms mean = 104.29ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.296875), (index: 309,  score: 1.988281), (index: 883,  score: 1.286133), 
[138 iters] min = 142.87ms max = 146.51ms median = 145.68ms mean = 145.48ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 8.992188), (index: 308,  score: 2.257812), (index: 301,  score: 2.146484), 
[104 iters] min = 189.62ms max = 196.12ms median = 193.91ms mean = 193.58ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.890625), (index: 494,  score: 2.093750), (index: 309,  score: 1.869141), 
[81 iters] min = 242.85ms max = 249.15ms median = 247.81ms mean = 247.38ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.531250), (index: 883,  score: 2.261719), (index: 309,  score: 2.226562), 
[66 iters] min = 302.29ms max = 308.83ms median = 307.58ms mean = 307.12ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.679688), (index: 309,  score: 6.367188), (index: 308,  score: 6.210938), 
[536 iters] min =  36.68ms max =  37.92ms median =  37.42ms mean =  37.36ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 13.031250), (index: 89,  score: 6.449219), (index: 951,  score: 5.757812), 
[250 iters] min =  78.50ms max =  80.79ms median =  80.21ms mean =  80.08ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.585938), (index: 838,  score: 4.250000), (index: 309,  score: 4.039062), 
[174 iters] min = 112.81ms max = 115.94ms median = 115.15ms mean = 114.98ms
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.468750), (index: 308,  score: 3.488281), (index: 309,  score: 3.349609), 
[1527 iters] min =  12.65ms max =  13.30ms median =  13.15ms mean =  13.10ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.132812), (index: 309,  score: 3.425781), (index: 113,  score: 3.382812), 
[1096 iters] min =  17.50ms max =  29.42ms median =  18.14ms mean =  18.25ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.578125), (index: 644,  score: 3.214844), (index: 326,  score: 3.183594), 
[807 iters] min =  24.25ms max =  25.08ms median =  24.86ms mean =  24.81ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.375000), (index: 108,  score: 3.238281), (index: 309,  score: 2.873047), 
[490 iters] min =  39.83ms max =  43.18ms median =  40.94ms mean =  40.87ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.496094), (index: 113,  score: -4.964844), (index: 310,  score: -5.296875), 
[197 iters] min =  98.14ms max = 109.60ms median = 101.67ms mean = 101.80ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.578125), (index: 308,  score: 2.345703), (index: 310,  score: 2.337891), 
[1764 iters] min =  10.85ms max =  13.73ms median =  11.30ms mean =  11.34ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.507812), (index: 309,  score: 2.367188), (index: 108,  score: 2.281250), 
[572 iters] min =  34.47ms max =  37.20ms median =  34.97ms mean =  35.01ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.484375), (index: 861,  score: 2.271484), (index: 309,  score: 2.140625), 
[379 iters] min =  52.19ms max =  56.58ms median =  52.85ms mean =  52.87ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 9.875000), (index: 883,  score: 2.527344), (index: 113,  score: 2.044922), 
[268 iters] min =  73.53ms max =  78.85ms median =  74.58ms mean =  74.68ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.109375), (index: 955,  score: 2.865234), (index: 947,  score: 2.171875), 
[159 iters] min = 123.70ms max = 129.68ms median = 125.65ms mean = 125.99ms
GPU Vulkan @ 1.3GHz
$ BACK=v MODEL=ALL make run-mnn-perf                                                                                     
INFO: Using Vulkan backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
<<<<<<<<<
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 9.117188), (index: 309,  score: 4.136719), (index: 644,  score: 4.027344), 
[179 iters] min = 110.92ms max = 115.87ms median = 111.88ms mean = 112.07ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 10.796875), (index: 308,  score: 4.867188), (index: 309,  score: 4.363281), 
[127 iters] min = 156.31ms max = 161.35ms median = 157.50ms mean = 157.59ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 11.992188), (index: 22,  score: 3.699219), (index: 309,  score: 3.423828), 
[84 iters] min = 236.00ms max = 243.11ms median = 237.78ms mean = 238.19ms
>>>>>>>>>
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 11.734375), (index: 644,  score: 4.859375), (index: 309,  score: 3.833984), 
[173 iters] min = 113.67ms max = 119.33ms median = 115.60ms mean = 115.63ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 13.312500), (index: 984,  score: 4.417969), (index: 308,  score: 4.378906), 
[124 iters] min = 159.88ms max = 166.59ms median = 161.23ms mean = 161.67ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 12.609375), (index: 22,  score: 3.974609), (index: 309,  score: 3.585938), 
[82 iters] min = 242.32ms max = 250.37ms median = 244.14ms mean = 244.47ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 985,  score: 11.757812), (index: 883,  score: 4.910156), (index: 309,  score: 4.730469), 
[239 iters] min =  83.57ms max =  85.19ms median =  83.89ms mean =  83.95ms
Creating MNN Interpreter: SwiftFormer_S
(index: 985,  score: 13.101562), (index: 89,  score: 4.292969), (index: 720,  score: 4.285156), 
[192 iters] min = 104.09ms max = 108.60ms median = 104.40ms mean = 104.54ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 985,  score: 13.867188), (index: 310,  score: 4.140625), (index: 309,  score: 3.996094), 
[147 iters] min = 135.99ms max = 138.52ms median = 136.83ms mean = 136.90ms
Creating MNN Interpreter: EMO_1M
(index: 985,  score: 9.835938), (index: 309,  score: 4.378906), (index: 310,  score: 3.888672), 
[387 iters] min =  49.67ms max =  59.22ms median =  51.51ms mean =  51.69ms
Creating MNN Interpreter: EMO_2M
(index: 985,  score: 9.492188), (index: 309,  score: 3.394531), (index: 308,  score: 3.222656), 
[302 iters] min =  64.44ms max =  71.66ms median =  66.32ms mean =  66.44ms
Creating MNN Interpreter: EMO_5M
(index: 985,  score: 9.171875), (index: 883,  score: 2.806641), (index: 872,  score: 2.548828), 
[239 iters] min =  81.96ms max =  88.99ms median =  83.53ms mean =  83.79ms
Creating MNN Interpreter: EMO_6M
(index: 985,  score: 9.273438), (index: 309,  score: 2.283203), (index: 308,  score: 2.277344), 
[225 iters] min =  87.04ms max =  94.01ms median =  88.65ms mean =  88.90ms
Creating MNN Interpreter: edgenext_xx_small
(index: 985,  score: 10.546875), (index: 309,  score: 5.246094), (index: 310,  score: 4.902344), 
[284 iters] min =  68.50ms max =  76.24ms median =  70.24ms mean =  70.52ms
Creating MNN Interpreter: edgenext_x_small
(index: 985,  score: 9.687500), (index: 309,  score: 4.414062), (index: 308,  score: 3.535156), 
[171 iters] min = 115.76ms max = 121.82ms median = 117.34ms mean = 117.48ms
Creating MNN Interpreter: edgenext_small
(index: 985,  score: 12.406250), (index: 309,  score: 4.640625), (index: 308,  score: 4.371094), 
[122 iters] min = 157.62ms max = 175.14ms median = 162.80ms mean = 163.96ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.398438), (index: 309,  score: 2.654297), (index: 89,  score: 2.539062), 
[496 iters] min =  33.90ms max =  51.00ms median =  38.67ms mean =  40.34ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.257812), (index: 309,  score: 2.718750), (index: 308,  score: 2.146484), 
[394 iters] min =  45.89ms max =  62.30ms median =  49.22ms mean =  50.81ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.226562), (index: 557,  score: 2.337891), (index: 309,  score: 2.095703), 
[327 iters] min =  57.19ms max =  66.93ms median =  60.99ms mean =  61.18ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.453125), (index: 309,  score: 2.078125), (index: 113,  score: 1.408203), 
[269 iters] min =  70.42ms max =  85.41ms median =  73.16ms mean =  74.41ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 9.039062), (index: 308,  score: 2.255859), (index: 301,  score: 2.226562), 
[231 iters] min =  80.24ms max =  98.53ms median =  85.65ms mean =  86.73ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.945312), (index: 494,  score: 2.107422), (index: 309,  score: 1.891602), 
[203 iters] min =  89.87ms max = 109.84ms median =  98.23ms mean =  98.67ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.578125), (index: 309,  score: 2.218750), (index: 308,  score: 2.191406), 
[142 iters] min = 131.16ms max = 163.60ms median = 141.97ms mean = 141.60ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.406250), (index: 309,  score: 6.507812), (index: 308,  score: 6.250000), 
[135 iters] min = 116.13ms max = 221.18ms median = 123.97ms mean = 148.91ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 13.023438), (index: 89,  score: 6.863281), (index: 309,  score: 5.894531), 
[141 iters] min = 123.32ms max = 206.79ms median = 131.99ms mean = 142.50ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.476562), (index: 309,  score: 3.781250), (index: 838,  score: 3.751953), 
[125 iters] min = 138.60ms max = 205.27ms median = 157.19ms mean = 161.37ms
<<<<<<<<<<<<<<<<<<<<<
Creating MNN Interpreter: LeViT_128S
(index: 999,  score: 6.093750), (index: 985,  score: 5.539062), (index: 574,  score: 5.121094), 
[438 iters] min =  41.74ms max =  50.39ms median =  45.73ms mean =  45.70ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 7.890625), (index: 465,  score: 6.074219), (index: 968,  score: 5.867188), 
[344 iters] min =  49.98ms max =  82.04ms median =  57.85ms mean =  58.27ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 8.789062), (index: 947,  score: 6.441406), (index: 992,  score: 5.175781), 
[328 iters] min =  54.57ms max =  89.29ms median =  59.55ms mean =  61.05ms
Creating MNN Interpreter: LeViT_256
(index: 879,  score: 8.812500), (index: 112,  score: 7.667969), (index: 999,  score: 7.066406), 
[309 iters] min =  60.97ms max =  69.00ms median =  64.65ms mean =  64.87ms
>>>>>>>>>>>>>>>>>>>>>
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.687500), (index: 308,  score: 3.576172), (index: 309,  score: 3.359375), 
[461 iters] min =  34.84ms max =  74.11ms median =  38.83ms mean =  43.39ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.296875), (index: 309,  score: 3.382812), (index: 113,  score: 3.230469), 
[379 iters] min =  48.90ms max =  70.43ms median =  52.41ms mean =  52.87ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.796875), (index: 324,  score: 3.390625), (index: 326,  score: 3.285156), 
[327 iters] min =  49.94ms max =  96.41ms median =  54.76ms mean =  61.19ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.187500), (index: 108,  score: 3.029297), (index: 309,  score: 2.933594), 
[327 iters] min =  58.28ms max =  71.09ms median =  60.76ms mean =  61.36ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.988281), (index: 113,  score: -5.246094), (index: 310,  score: -5.441406), 
[1947 iters] min =  10.01ms max =  11.13ms median =  10.24ms mean =  10.27ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.718750), (index: 310,  score: 2.730469), (index: 308,  score: 2.384766), 
[2779 iters] min =   6.72ms max =   9.05ms median =   7.01ms mean =   7.20ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.695312), (index: 309,  score: 2.580078), (index: 310,  score: 2.396484), 
[1636 iters] min =  11.97ms max =  13.31ms median =  12.16ms mean =  12.23ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.671875), (index: 309,  score: 2.291016), (index: 310,  score: 2.207031), 
[1340 iters] min =  14.65ms max =  16.07ms median =  14.88ms mean =  14.93ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 10.007812), (index: 883,  score: 2.626953), (index: 309,  score: 2.167969), 
[1148 iters] min =  17.13ms max =  18.60ms median =  17.36ms mean =  17.44ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.179688), (index: 955,  score: 2.839844), (index: 310,  score: 2.199219), 
[859 iters] min =  22.92ms max =  24.96ms median =  23.27ms mean =  23.30ms
GPU Vulkan @ 0.61GHz
$ BACK=v MODEL=ALL make run-mnn-perf
INFO: Using Vulkan backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
<<<<<<<<<<<<<<<<<
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 9.117188), (index: 309,  score: 4.136719), (index: 644,  score: 4.027344), 
[156 iters] min = 126.73ms max = 134.99ms median = 128.45ms mean = 128.75ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 10.796875), (index: 308,  score: 4.867188), (index: 309,  score: 4.363281), 
[112 iters] min = 175.67ms max = 185.72ms median = 178.31ms mean = 178.73ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 11.992188), (index: 22,  score: 3.699219), (index: 309,  score: 3.423828), 
[74 iters] min = 266.09ms max = 290.87ms median = 272.02ms mean = 272.82ms
>>>>>>>>>>>>>>>>>
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 11.734375), (index: 644,  score: 4.859375), (index: 309,  score: 3.833984), 
[143 iters] min = 136.85ms max = 147.87ms median = 139.47ms mean = 140.10ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 13.312500), (index: 984,  score: 4.417969), (index: 308,  score: 4.378906), 
[105 iters] min = 187.65ms max = 199.54ms median = 190.41ms mean = 190.89ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 12.609375), (index: 22,  score: 3.974609), (index: 309,  score: 3.585938), 
[69 iters] min = 286.85ms max = 297.49ms median = 289.92ms mean = 290.82ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 985,  score: 11.757812), (index: 883,  score: 4.910156), (index: 309,  score: 4.730469), 
[206 iters] min =  96.10ms max = 108.22ms median =  96.64ms mean =  97.53ms
Creating MNN Interpreter: SwiftFormer_S
(index: 985,  score: 13.101562), (index: 89,  score: 4.292969), (index: 720,  score: 4.285156), 
[167 iters] min = 118.83ms max = 127.10ms median = 119.76ms mean = 119.95ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 985,  score: 13.867188), (index: 310,  score: 4.140625), (index: 309,  score: 3.996094), 
[128 iters] min = 153.45ms max = 170.10ms median = 155.03ms mean = 156.81ms
Creating MNN Interpreter: EMO_1M
(index: 985,  score: 9.835938), (index: 309,  score: 4.378906), (index: 310,  score: 3.888672), 
[250 iters] min =  67.80ms max = 128.93ms median =  77.09ms mean =  80.08ms
Creating MNN Interpreter: EMO_2M
(index: 985,  score: 9.492188), (index: 309,  score: 3.394531), (index: 308,  score: 3.222656), 
[208 iters] min =  82.73ms max = 143.41ms median =  87.29ms mean =  96.27ms
Creating MNN Interpreter: EMO_5M
(index: 985,  score: 9.171875), (index: 883,  score: 2.806641), (index: 872,  score: 2.548828), 
[186 iters] min = 101.14ms max = 133.53ms median = 105.66ms mean = 108.13ms
Creating MNN Interpreter: EMO_6M
(index: 985,  score: 9.273438), (index: 309,  score: 2.283203), (index: 308,  score: 2.277344), 
[182 iters] min = 105.95ms max = 123.27ms median = 109.69ms mean = 110.12ms
Creating MNN Interpreter: edgenext_xx_small
(index: 985,  score: 10.546875), (index: 309,  score: 5.246094), (index: 310,  score: 4.902344), 
[235 iters] min =  81.34ms max =  95.19ms median =  84.72ms mean =  85.29ms
Creating MNN Interpreter: edgenext_x_small
(index: 985,  score: 9.687500), (index: 309,  score: 4.414062), (index: 308,  score: 3.535156), 
[144 iters] min = 133.16ms max = 152.52ms median = 137.95ms mean = 139.01ms
Creating MNN Interpreter: edgenext_small
(index: 985,  score: 12.406250), (index: 309,  score: 4.640625), (index: 308,  score: 4.371094), 
[108 iters] min = 180.82ms max = 201.55ms median = 185.21ms mean = 186.70ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.398438), (index: 309,  score: 2.654297), (index: 89,  score: 2.539062), 
[327 iters] min =  56.81ms max =  68.77ms median =  60.77ms mean =  61.19ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.257812), (index: 309,  score: 2.718750), (index: 308,  score: 2.146484), 
[250 iters] min =  75.62ms max =  85.16ms median =  79.70ms mean =  80.00ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.226562), (index: 557,  score: 2.337891), (index: 309,  score: 2.095703), 
[200 iters] min =  93.73ms max = 110.34ms median =  99.70ms mean = 100.23ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.453125), (index: 309,  score: 2.078125), (index: 113,  score: 1.408203), 
[167 iters] min = 114.47ms max = 132.93ms median = 119.09ms mean = 119.85ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 9.039062), (index: 308,  score: 2.255859), (index: 301,  score: 2.226562), 
[145 iters] min = 133.62ms max = 144.00ms median = 138.50ms mean = 138.66ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.945312), (index: 494,  score: 2.107422), (index: 309,  score: 1.891602), 
[124 iters] min = 153.27ms max = 175.51ms median = 161.29ms mean = 162.10ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.578125), (index: 309,  score: 2.218750), (index: 308,  score: 2.191406), 
[90 iters] min = 205.48ms max = 261.42ms median = 224.03ms mean = 223.98ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.406250), (index: 309,  score: 6.507812), (index: 308,  score: 6.250000), 
[102 iters] min = 184.41ms max = 207.50ms median = 197.42ms mean = 197.72ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 13.023438), (index: 89,  score: 6.863281), (index: 309,  score: 5.894531), 
[96 iters] min = 190.55ms max = 221.82ms median = 209.26ms mean = 209.54ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.476562), (index: 309,  score: 3.781250), (index: 838,  score: 3.751953), 
[85 iters] min = 227.10ms max = 334.69ms median = 232.88ms mean = 239.03ms
<<<<<<<<<<<<<<<<<<
Creating MNN Interpreter: LeViT_128S
(index: 999,  score: 6.093750), (index: 985,  score: 5.539062), (index: 574,  score: 5.121094), 
[282 iters] min =  61.19ms max =  78.26ms median =  71.54ms mean =  71.14ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 7.890625), (index: 465,  score: 6.074219), (index: 968,  score: 5.867188), 
[219 iters] min =  75.51ms max = 103.14ms median =  91.57ms mean =  91.39ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 8.789062), (index: 947,  score: 6.441406), (index: 992,  score: 5.175781), 
[210 iters] min =  81.58ms max = 113.64ms median =  95.53ms mean =  95.44ms
Creating MNN Interpreter: LeViT_256
(index: 879,  score: 8.812500), (index: 112,  score: 7.667969), (index: 999,  score: 7.066406), 
[195 iters] min =  95.83ms max = 107.51ms median = 103.32ms mean = 103.02ms
>>>>>>>>>>>>>>>>>>
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.687500), (index: 308,  score: 3.576172), (index: 309,  score: 3.359375), 
[303 iters] min =  54.08ms max =  94.00ms median =  66.33ms mean =  66.21ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.296875), (index: 309,  score: 3.382812), (index: 113,  score: 3.230469), 
[215 iters] min =  70.95ms max = 133.15ms median =  88.02ms mean =  93.22ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.796875), (index: 324,  score: 3.390625), (index: 326,  score: 3.285156), 
[204 iters] min =  82.21ms max = 135.07ms median =  91.74ms mean =  98.32ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.187500), (index: 108,  score: 3.029297), (index: 309,  score: 2.933594), 
[200 iters] min =  88.61ms max = 107.25ms median = 100.74ms mean = 100.36ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.988281), (index: 113,  score: -5.246094), (index: 310,  score: -5.441406), 
[1116 iters] min =  17.63ms max =  20.70ms median =  17.87ms mean =  17.93ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.718750), (index: 310,  score: 2.730469), (index: 308,  score: 2.384766), 
[1726 iters] min =  11.32ms max =  12.66ms median =  11.54ms mean =  11.59ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.695312), (index: 309,  score: 2.580078), (index: 310,  score: 2.396484), 
[980 iters] min =  20.00ms max =  21.66ms median =  20.42ms mean =  20.41ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.671875), (index: 309,  score: 2.291016), (index: 310,  score: 2.207031), 
[797 iters] min =  24.74ms max =  28.12ms median =  25.07ms mean =  25.09ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 10.007812), (index: 883,  score: 2.626953), (index: 309,  score: 2.167969), 
[685 iters] min =  28.80ms max =  30.68ms median =  29.19ms mean =  29.20ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.179688), (index: 955,  score: 2.839844), (index: 310,  score: 2.199219), 
[506 iters] min =  39.04ms max =  43.04ms median =  39.56ms mean =  39.56ms
cortex-A78 @ 1 thread @ 2.2GHz w/ 2.5.0 conversion+quantization int8 + latest(10/13) runtime fake performance
INFO: Using CPU backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 0
Creating MNN Interpreter: efficientformerv2_s0
efficientformerv2_s0 model doesn't exist!!!
Creating MNN Interpreter: efficientformerv2_s1
efficientformerv2_s1 model doesn't exist!!!
Creating MNN Interpreter: efficientformerv2_s2
efficientformerv2_s2 model doesn't exist!!!
[ - ] efficientformerv2_s0.mnn    max =   29.616 ms  min =   29.181 ms  avg =   29.420 ms
[ - ] efficientformerv2_s1.mnn    max =   42.532 ms  min =   42.056 ms  avg =   42.373 ms
[ - ] efficientformerv2_s2.mnn    max =   69.602 ms  min =   68.106 ms  avg =   69.256 ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 990,  score: 19.464653), (index: 988,  score: 19.464653), (index: 986,  score: 19.464653), 
[581 iters] min =  34.12ms max =  38.63ms median =  34.45ms mean =  34.46ms
Creating MNN Interpreter: SwiftFormer_S
(index: 990,  score: 15.304254), (index: 988,  score: 15.304254), (index: 986,  score: 15.304254), 
[443 iters] min =  44.49ms max =  48.43ms median =  45.17ms mean =  45.18ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 990,  score: 15.005185), (index: 988,  score: 15.005185), (index: 986,  score: 15.005185), 
[319 iters] min =  62.53ms max =  67.46ms median =  62.77ms mean =  62.84ms
Creating MNN Interpreter: EMO_1M
(index: 969,  score: 11.736819), (index: 862,  score: 9.862873), (index: 800,  score: 9.566987), 
[556 iters] min =  35.80ms max =  36.20ms median =  36.00ms mean =  36.01ms
Creating MNN Interpreter: EMO_2M
(index: 796,  score: 6.245563), (index: 753,  score: 5.189974), (index: 639,  score: 5.189974), 
[395 iters] min =  50.34ms max =  54.41ms median =  50.65ms mean =  50.66ms
Creating MNN Interpreter: EMO_5M
(index: 676,  score: 8.427950), (index: 474,  score: 7.853317), (index: 806,  score: 7.661772), 
[277 iters] min =  71.80ms max =  76.91ms median =  72.28ms mean =  72.29ms
Creating MNN Interpreter: EMO_6M
(index: 115,  score: 6.597718), (index: 517,  score: 6.503464), (index: 611,  score: 6.126452), 
[257 iters] min =  77.13ms max =  78.43ms median =  78.10ms mean =  78.07ms
Creating MNN Interpreter: edgenext_xx_small
(index: 714,  score: 4.785457), (index: 743,  score: 4.350416), (index: 755,  score: 3.915374), 
[829 iters] min =  23.87ms max =  24.35ms median =  24.15ms mean =  24.14ms
Creating MNN Interpreter: edgenext_x_small
(index: 691,  score: 4.221617), (index: 655,  score: 4.127803), (index: 712,  score: 3.846362), 
[471 iters] min =  41.87ms max =  42.72ms median =  42.51ms mean =  42.50ms
Creating MNN Interpreter: edgenext_small
(index: 831,  score: 3.955293), (index: 624,  score: 3.729276), (index: 868,  score: 3.390251), 
[281 iters] min =  70.97ms max =  71.59ms median =  71.33ms mean =  71.33ms
Creating MNN Interpreter: mobilevitv2_050
(index: 843,  score: 11.173376), (index: 158,  score: 10.733479), (index: 128,  score: 10.205604), 
[465 iters] min =  42.82ms max =  43.32ms median =  43.09ms mean =  43.09ms
Creating MNN Interpreter: mobilevitv2_075
(index: 91,  score: 8.383656), (index: 749,  score: 6.529578), (index: 21,  score: 6.448966), 
[289 iters] min =  68.11ms max =  73.89ms median =  69.22ms mean =  69.26ms
Creating MNN Interpreter: mobilevitv2_100
(index: 141,  score: 9.741990), (index: 273,  score: 9.417257), (index: 459,  score: 9.092525), 
[202 iters] min =  98.36ms max = 100.52ms median =  99.09ms mean =  99.09ms
Creating MNN Interpreter: mobilevitv2_125
(index: 868,  score: 10.849152), (index: 808,  score: 10.849152), (index: 778,  score: 10.849152), 
[152 iters] min = 129.87ms max = 132.88ms median = 131.81ms mean = 131.78ms
Creating MNN Interpreter: mobilevitv2_150
(index: 783,  score: 13.499125), (index: 899,  score: 11.585863), (index: 733,  score: 11.266986), 
[120 iters] min = 166.82ms max = 170.66ms median = 167.97ms mean = 167.99ms
Creating MNN Interpreter: mobilevitv2_175
(index: 742,  score: 10.263430), (index: 544,  score: 10.004688), (index: 613,  score: 9.918441), 
[97 iters] min = 206.49ms max = 208.94ms median = 207.49ms mean = 207.56ms
Creating MNN Interpreter: mobilevitv2_200
(index: 808,  score: 7.822464), (index: 861,  score: 7.356842), (index: 840,  score: 7.263717), 
[81 iters] min = 248.90ms max = 251.68ms median = 249.97ms mean = 249.99ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 822,  score: 10.542213), (index: 955,  score: 10.439862), (index: 921,  score: 1.944680), 
[283 iters] min =  70.33ms max =  71.90ms median =  70.75ms mean =  70.77ms
Creating MNN Interpreter: mobilevit_x_small
(index: 763,  score: 8.259170), (index: 428,  score: 7.589508), (index: 437,  score: 6.585014), 
[171 iters] min = 116.81ms max = 120.65ms median = 117.69ms mean = 117.63ms
Creating MNN Interpreter: mobilevit_small
(index: 599,  score: 8.018028), (index: 747,  score: 1.030889), (index: 537,  score: -2.290865), 
[134 iters] min = 149.60ms max = 151.46ms median = 150.37ms mean = 150.37ms
Creating MNN Interpreter: LeViT_128S
(index: 990,  score: 14.561517), (index: 988,  score: 14.561517), (index: 986,  score: 14.561517), 
[1093 iters] min =  18.13ms max =  21.66ms median =  18.26ms mean =  18.31ms
Creating MNN Interpreter: LeViT_128
(index: 990,  score: 13.826856), (index: 988,  score: 13.826856), (index: 986,  score: 13.826856), 
[719 iters] min =  27.75ms max =  27.99ms median =  27.85ms mean =  27.85ms
Creating MNN Interpreter: LeViT_192
(index: 990,  score: 13.753602), (index: 988,  score: 13.753602), (index: 986,  score: 13.753602), 
[650 iters] min =  30.62ms max =  31.02ms median =  30.79ms mean =  30.79ms
Creating MNN Interpreter: LeViT_256
(index: 990,  score: 13.123007), (index: 988,  score: 13.123007), (index: 986,  score: 13.123007), 
[450 iters] min =  44.35ms max =  44.70ms median =  44.51ms mean =  44.52ms
Creating MNN Interpreter: resnet50
(index: 999,  score: 19.008062), (index: 998,  score: 19.008062), (index: 997,  score: 19.008062), 
[265 iters] min =  75.50ms max =  75.83ms median =  75.66ms mean =  75.66ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 868,  score: 2.960339), (index: 730,  score: 2.552016), (index: 843,  score: 2.143693), 
[1499 iters] min =  13.02ms max =  13.58ms median =  13.35ms mean =  13.35ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 929,  score: 11.324560), (index: 632,  score: 11.324560), (index: 548,  score: 11.324560), 
[547 iters] min =  36.51ms max =  36.70ms median =  36.60ms mean =  36.60ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 701,  score: 6.156499), (index: 177,  score: 6.156499), (index: 871,  score: 6.067274), 
[352 iters] min =  55.93ms max =  60.37ms median =  56.92ms mean =  56.89ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 59,  score: 6.689412), (index: 737,  score: 6.410686), (index: 688,  score: 6.317778), 
[259 iters] min =  77.26ms max =  77.79ms median =  77.41ms mean =  77.41ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 678,  score: 1.706579), (index: 584,  score: 1.616759), (index: 904,  score: 1.437119), 
[157 iters] min = 126.77ms max = 129.96ms median = 127.43ms mean = 127.41ms

tnn

commid id: 0afdc3b3ad1f5b3bea205ed3426ed2235481a3a7

cortex-A78 @ 1 thread @ 2.2GHz
$ MODEL=ALL make run-tnn-perf               
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating TNN net: efficientformerv2_s0
(index: 985,  score: 11.718507), (index: 644,  score: 4.943151), (index: 309,  score: 3.836673), 
[445 iters] min =  44.56ms max =  55.45ms median =  44.92ms mean =  45.01ms
Creating TNN net: efficientformerv2_s1
(index: 985,  score: 13.267982), (index: 984,  score: 4.345347), (index: 308,  score: 4.289361), 
[293 iters] min =  67.87ms max =  69.30ms median =  68.41ms mean =  68.40ms
Creating TNN net: efficientformerv2_s2
(index: 985,  score: 12.624017), (index: 22,  score: 3.935431), (index: 309,  score: 3.621786), 
[167 iters] min = 118.82ms max = 121.19ms median = 120.41ms mean = 120.40ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating TNN net: LeViT_128S
(index: 985,  score: 11.709329), (index: 308,  score: 3.567969), (index: 309,  score: 3.375843), 
[571 iters] min =  34.71ms max =  35.40ms median =  35.04ms mean =  35.04ms
Creating TNN net: LeViT_128
(index: 985,  score: 11.346685), (index: 309,  score: 3.408514), (index: 113,  score: 3.297297), 
[416 iters] min =  46.24ms max =  48.65ms median =  48.20ms mean =  48.19ms
Creating TNN net: LeViT_192
(index: 985,  score: 11.811436), (index: 324,  score: 3.397015), (index: 326,  score: 3.303873), 
[308 iters] min =  64.83ms max =  65.39ms median =  65.02ms mean =  65.04ms
Creating TNN net: LeViT_256
(index: 985,  score: 11.188828), (index: 108,  score: 3.035164), (index: 309,  score: 2.935831), 
[198 iters] min = 100.88ms max = 102.12ms median = 101.21ms mean = 101.26ms
Creating TNN net: resnet50
(index: 985,  score: 7.986876), (index: 113,  score: -5.246382), (index: 310,  score: -5.445831), 
[93 iters] min = 212.65ms max = 217.18ms median = 216.20ms mean = 216.21ms
Creating TNN net: mobilenetv3_large_100
(index: 985,  score: 9.726579), (index: 310,  score: 2.717163), (index: 308,  score: 2.388682), 
[1042 iters] min =  19.11ms max =  19.48ms median =  19.19ms mean =  19.20ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!

paddle lite

commid id: edea477553f595512fcbcaf9faf977494129f3d9

cortex-A78 @ 1 thread @ 2.2GHz
$ MODEL=ALL make run-pdlite-perf
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating PaddlePredictor: efficientformerv2_s0
[I  9/20 16:25:39.297 ...ork/Paddle-Lite/lite/core/device_info.cc:283 get_cpu_arch] Unknow cpu arch: 3394
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1330 Setup] ARM multiprocessors name: MODEL NAME      : ARMV8 PROCESSOR REV 1 (V8L)

[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1331 Setup] ARM multiprocessors number: 12
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1333 Setup] ARM multiprocessors ID: 0, max freq: 2201, min freq: 2201, cluster ID: 0, CPU ARCH: A-1
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1339 Setup] L1 DataCache size is: 
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1341 Setup] 64 KB
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1343 Setup] L2 Cache size is: 
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1345 Setup] 256 KB
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1347 Setup] L3 Cache size is: 
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1349 Setup] 2048 KB
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1351 Setup] Total memory: 31322864KB
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1352 Setup] SVE2 support: 0
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1353 Setup] SVE2 f32mm support: 0
[I  9/20 16:25:39.299 ...ork/Paddle-Lite/lite/core/device_info.cc:1354 Setup] SVE2 i8mm support: 0
(index: 985,  score: 11.863880), (index: 644,  score: 5.181920), (index: 309,  score: 3.783359), 
[382 iters] min =  51.10ms max =  52.86ms median =  52.46ms mean =  52.44ms
Creating PaddlePredictor: efficientformerv2_s1
(index: 985,  score: 13.485666), (index: 984,  score: 4.418849), (index: 308,  score: 4.411816), 
[252 iters] min =  79.01ms max =  80.02ms median =  79.63ms mean =  79.60ms
Creating PaddlePredictor: efficientformerv2_s2
(index: 985,  score: 12.741438), (index: 22,  score: 3.938634), (index: 80,  score: 3.552274), 
[147 iters] min = 135.97ms max = 137.32ms median = 136.88ms mean = 136.84ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating PaddlePredictor: edgenext_xx_small
[I  9/20 16:26:54.847 ...Paddle-Lite/lite/operators/squeeze_op.cc:124 AttachImpl] PaddleLiteV2.12 remove XShape OutputTensor for SqueezeOp.
(index: 985,  score: 10.566197), (index: 309,  score: 5.252448), (index: 310,  score: 4.913684), 
[328 iters] min =  60.09ms max =  61.70ms median =  61.14ms mean =  61.14ms
Creating PaddlePredictor: edgenext_x_small
[I  9/20 16:27:19.956 ...Paddle-Lite/lite/operators/squeeze_op.cc:124 AttachImpl] PaddleLiteV2.12 remove XShape OutputTensor for SqueezeOp.
(index: 985,  score: 9.699077), (index: 309,  score: 4.416987), (index: 308,  score: 3.542241), 
[187 iters] min = 106.66ms max = 108.06ms median = 107.48ms mean = 107.47ms
Creating PaddlePredictor: edgenext_small
[I  9/20 16:27:45.155 ...Paddle-Lite/lite/operators/squeeze_op.cc:124 AttachImpl] PaddleLiteV2.12 remove XShape OutputTensor for SqueezeOp.
(index: 985,  score: 12.120754), (index: 309,  score: 4.450460), (index: 308,  score: 3.965276), 
[103 iters] min = 190.68ms max = 196.24ms median = 195.26ms mean = 195.18ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
Creating PaddlePredictor: mobilevit_xx_small
(index: 985,  score: 12.435376), (index: 309,  score: 6.497385), (index: 308,  score: 6.236424), 
[339 iters] min =  58.55ms max =  59.35ms median =  59.02ms mean =  59.02ms
Creating PaddlePredictor: mobilevit_x_small
(index: 985,  score: 13.047843), (index: 89,  score: 6.821341), (index: 309,  score: 5.869913), 
[161 iters] min = 121.19ms max = 125.37ms median = 124.65ms mean = 124.64ms
Creating PaddlePredictor: mobilevit_small
(index: 985,  score: 10.445730), (index: 309,  score: 3.723504), (index: 838,  score: 3.721817), 
[104 iters] min = 191.60ms max = 193.43ms median = 192.65ms mean = 192.68ms
Creating PaddlePredictor: LeViT_128S
(index: 985,  score: 11.709342), (index: 308,  score: 3.568015), (index: 309,  score: 3.375860), 
[578 iters] min =  34.32ms max =  34.95ms median =  34.67ms mean =  34.66ms
Creating PaddlePredictor: LeViT_128
(index: 985,  score: 11.346714), (index: 309,  score: 3.408517), (index: 113,  score: 3.297331), 
[425 iters] min =  45.43ms max =  47.43ms median =  47.16ms mean =  47.15ms
Creating PaddlePredictor: LeViT_192
(index: 985,  score: 11.811453), (index: 324,  score: 3.397026), (index: 326,  score: 3.303875), 
[312 iters] min =  63.81ms max =  64.49ms median =  64.15ms mean =  64.15ms
Creating PaddlePredictor: LeViT_256
(index: 985,  score: 11.188838), (index: 108,  score: 3.035203), (index: 309,  score: 2.935844), 
[190 iters] min = 101.78ms max = 106.04ms median = 105.57ms mean = 105.53ms
Creating PaddlePredictor: resnet50
(index: 985,  score: 7.986873), (index: 113,  score: -5.246380), (index: 310,  score: -5.445833), 
[95 iters] min = 211.39ms max = 213.49ms median = 212.77ms mean = 212.75ms
Creating PaddlePredictor: mobilenetv3_large_100
(index: 985,  score: 9.726584), (index: 310,  score: 2.717168), (index: 308,  score: 2.388681), 
[933 iters] min =  21.24ms max =  21.82ms median =  21.45ms mean =  21.45ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!

tensorflow lite

commit id: f12ce2113e361dac536d95d6f1b396048259a3c3

cortex-A78 @ 1 thread @ 2.2GHz tinynn fp32
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 13.800571), (index: 644,  score: 6.719913), (index: 662,  score: 4.357441), 
[496 iters] min =  39.26ms max =  45.93ms median =  40.38ms mean =  40.32ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 11.002513), (index: 892,  score: 5.913536), (index: 794,  score: 5.847847), 
[318 iters] min =  61.40ms max =  67.91ms median =  62.92ms mean =  62.91ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 14.202505), (index: 574,  score: 5.209904), (index: 650,  score: 4.950992), 
[178 iters] min = 109.78ms max = 116.03ms median = 112.93ms mean = 112.67ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 16.348614), (index: 107,  score: 8.219887), (index: 308,  score: 7.765065), 
[388 iters] min =  50.24ms max =  52.28ms median =  51.76ms mean =  51.61ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 10.332458), (index: 309,  score: 4.304403), (index: 507,  score: 3.876854), 
[259 iters] min =  75.85ms max =  79.64ms median =  77.50ms mean =  77.33ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.199683), (index: 310,  score: 4.649525), (index: 309,  score: 4.089820), 
[165 iters] min = 118.61ms max = 131.96ms median = 122.02ms mean = 121.91ms
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 9.241662), (index: 328,  score: 7.229661), (index: 619,  score: 6.890592), 
[605 iters] min =  32.05ms max =  33.61ms median =  33.16ms mean =  33.07ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.554611), (index: 493,  score: 6.152699), (index: 310,  score: 3.873620), 
[398 iters] min =  48.84ms max =  55.44ms median =  50.32ms mean =  50.28ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 8.625879), (index: 794,  score: 5.527351), (index: 108,  score: 4.698321), 
[223 iters] min =  87.47ms max =  94.14ms median =  89.88ms mean =  89.99ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 9.466664), (index: 446,  score: 5.847961), (index: 885,  score: 4.761618), 
[209 iters] min =  93.31ms max =  98.58ms median =  96.13ms mean =  96.10ms
Creating tflite runtime interpreter: edgenext_xx_small
(index: 144,  score: 5.642828), (index: 858,  score: 5.068350), (index: 132,  score: 5.017061), 
[828 iters] min =  23.63ms max =  26.44ms median =  24.21ms mean =  24.18ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 904,  score: 9.758960), (index: 905,  score: 8.679010), (index: 828,  score: 7.538647), 
[431 iters] min =  45.31ms max =  47.13ms median =  46.59ms mean =  46.48ms
Creating tflite runtime interpreter: edgenext_small
(index: 904,  score: 6.315926), (index: 753,  score: 5.907308), (index: 905,  score: 5.188027), 
[219 iters] min =  88.99ms max =  98.84ms median =  91.88ms mean =  91.74ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 905,  score: 7.073186), (index: 688,  score: 5.798759), (index: 530,  score: 4.821216), 
[511 iters] min =  38.22ms max =  43.16ms median =  39.19ms mean =  39.16ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 904,  score: 6.283208), (index: 753,  score: 6.140928), (index: 905,  score: 5.674746), 
[273 iters] min =  71.81ms max =  74.34ms median =  73.47ms mean =  73.33ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 904,  score: 6.422704), (index: 753,  score: 4.768656), (index: 905,  score: 3.757758), 
[168 iters] min = 116.33ms max = 122.07ms median = 119.08ms mean = 119.06ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 549,  score: 4.407668), (index: 905,  score: 4.018123), (index: 753,  score: 3.660830), 
[115 iters] min = 170.95ms max = 179.04ms median = 174.88ms mean = 174.86ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 904,  score: 6.959464), (index: 905,  score: 5.279493), (index: 556,  score: 4.383082), 
[83 iters] min = 237.53ms max = 245.24ms median = 242.62ms mean = 242.09ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 905,  score: 7.720383), (index: 904,  score: 6.793842), (index: 753,  score: 6.216552), 
[63 iters] min = 314.47ms max = 330.20ms median = 320.40ms mean = 319.85ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 904,  score: 7.456795), (index: 905,  score: 5.135217), (index: 556,  score: 4.294895), 
[49 iters] min = 401.54ms max = 415.42ms median = 409.83ms mean = 409.58ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 905,  score: 9.074959), (index: 581,  score: 7.366666), (index: 530,  score: 6.987810), 
[594 iters] min =  32.76ms max =  36.20ms median =  33.74ms mean =  33.69ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 905,  score: 8.960419), (index: 904,  score: 7.904361), (index: 753,  score: 6.592516), 
[253 iters] min =  76.78ms max =  80.49ms median =  79.50ms mean =  79.22ms
Creating tflite runtime interpreter: mobilevit_small
(index: 904,  score: 6.754923), (index: 905,  score: 6.661246), (index: 858,  score: 5.174719), 
[152 iters] min = 127.86ms max = 132.81ms median = 131.96ms mean = 131.58ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 8.677929), (index: 868,  score: 8.497841), (index: 446,  score: 7.851535), 
[835 iters] min =  22.59ms max =  24.50ms median =  24.15ms mean =  23.96ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 9.898071), (index: 619,  score: 5.420589), (index: 539,  score: 4.751773), 
[620 iters] min =  30.58ms max =  32.84ms median =  32.47ms mean =  32.28ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 10.134396), (index: 328,  score: 7.682946), (index: 619,  score: 6.307396), 
[421 iters] min =  45.62ms max =  48.19ms median =  47.76ms mean =  47.51ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 8.615749), (index: 818,  score: 6.255535), (index: 619,  score: 6.188113), 
[250 iters] min =  76.56ms max =  81.44ms median =  80.58ms mean =  80.10ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.842050), (index: 652,  score: -3.425980), (index: 439,  score: -4.438686), 
[76 iters] min = 253.76ms max = 267.03ms median = 265.73ms mean = 264.38ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 112,  score: 6.790292), (index: 985,  score: 5.795063), (index: 591,  score: 5.150109), 
[1100 iters] min =  17.54ms max =  18.58ms median =  18.28ms mean =  18.20ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
cortex-A78 @ 1 thread @ 2.2GHz tinynn dynamic int8
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 10.414447), (index: 473,  score: 7.323678), (index: 243,  score: 5.948439), 
[593 iters] min =  32.53ms max =  44.28ms median =  33.72ms mean =  33.76ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 17.765656), (index: 89,  score: 8.259610), (index: 512,  score: 7.648966), 
[410 iters] min =  47.47ms max =  59.42ms median =  48.97ms mean =  48.88ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 10.992670), (index: 335,  score: 6.229464), (index: 451,  score: 6.014560), 
[255 iters] min =  76.14ms max =  79.42ms median =  78.72ms mean =  78.48ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 12.597744), (index: 883,  score: 6.429352), (index: 584,  score: 6.104802), 
[515 iters] min =  37.38ms max =  39.57ms median =  39.04ms mean =  38.87ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 13.702253), (index: 632,  score: 7.228092), (index: 904,  score: 5.929401), 
[397 iters] min =  48.46ms max =  54.11ms median =  50.48ms mean =  50.42ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.422840), (index: 904,  score: 10.359863), (index: 556,  score: 5.901742), 
[286 iters] min =  67.46ms max =  75.08ms median =  70.10ms mean =  69.98ms
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 10.772147), (index: 310,  score: 4.265167), (index: 309,  score: 4.034026), 
[603 iters] min =  31.85ms max =  39.58ms median =  33.28ms mean =  33.21ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.784461), (index: 309,  score: 3.289332), (index: 310,  score: 3.090404), 
[444 iters] min =  43.71ms max =  45.78ms median =  45.20ms mean =  45.08ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 8.009010), (index: 310,  score: 2.295238), (index: 311,  score: 2.265032), 
[294 iters] min =  65.96ms max =  69.25ms median =  68.38ms mean =  68.16ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 9.536195), (index: 883,  score: 2.864874), (index: 968,  score: 2.779290), 
[280 iters] min =  69.10ms max =  73.25ms median =  71.72ms mean =  71.44ms
Creating tflite runtime interpreter: edgenext_xx_small
(index: 144,  score: 5.726498), (index: 132,  score: 5.228430), (index: 858,  score: 4.910030), 
[1122 iters] min =  17.39ms max =  18.34ms median =  17.86ms mean =  17.84ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 905,  score: 7.151570), (index: 904,  score: 5.593434), (index: 539,  score: 5.189555), 
[637 iters] min =  30.58ms max =  32.23ms median =  31.48ms mean =  31.40ms
Creating tflite runtime interpreter: edgenext_small
(index: 905,  score: 7.833123), (index: 753,  score: 5.813052), (index: 904,  score: 4.813413), 
[373 iters] min =  52.18ms max =  54.80ms median =  53.81ms mean =  53.64ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 905,  score: 6.351662), (index: 688,  score: 6.100896), (index: 811,  score: 5.178001), 
[566 iters] min =  34.10ms max =  36.31ms median =  35.51ms mean =  35.39ms
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
Creating tflite runtime interpreter: mobilevitv2_150
(index: 885,  score: 4.623362), (index: 905,  score: 3.750659), (index: 148,  score: 3.582521), 
[144 iters] min = 132.90ms max = 143.84ms median = 139.30ms mean = 139.02ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 885,  score: 5.663316), (index: 854,  score: 5.009308), (index: 144,  score: 4.522904), 
[117 iters] min = 165.05ms max = 174.03ms median = 172.78ms mean = 172.03ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 905,  score: 6.786233), (index: 650,  score: 5.424253), (index: 904,  score: 4.502124), 
[96 iters] min = 200.93ms max = 213.88ms median = 209.24ms mean = 208.78ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 898,  score: 7.621788), (index: 611,  score: 7.552627), (index: 782,  score: 7.434354), 
[619 iters] min =  31.30ms max =  35.23ms median =  32.34ms mean =  32.34ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 905,  score: 10.061533), (index: 904,  score: 8.190913), (index: 818,  score: 6.948528), 
[285 iters] min =  66.80ms max =  76.21ms median =  70.54ms mean =  70.36ms
Creating tflite runtime interpreter: mobilevit_small
(index: 905,  score: 8.444880), (index: 904,  score: 3.538346), (index: 794,  score: 3.359672), 
[208 iters] min =  92.33ms max =  98.49ms median =  97.00ms mean =  96.50ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 11.338488), (index: 744,  score: 3.550334), (index: 309,  score: 3.416615), 
[1318 iters] min =  14.55ms max =  15.57ms median =  15.26ms mean =  15.18ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 11.076033), (index: 309,  score: 3.194498), (index: 113,  score: 3.029531), 
[970 iters] min =  19.80ms max =  21.00ms median =  20.72ms mean =  20.62ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.501357), (index: 326,  score: 3.302804), (index: 644,  score: 3.170937), 
[728 iters] min =  26.60ms max =  27.88ms median =  27.62ms mean =  27.50ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.314730), (index: 108,  score: 3.116097), (index: 309,  score: 3.107525), 
[491 iters] min =  39.17ms max =  43.04ms median =  40.85ms mean =  40.73ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.214152), (index: 310,  score: -4.907701), (index: 113,  score: -4.919555), 
[210 iters] min =  91.08ms max = 100.03ms median =  95.38ms mean =  95.24ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.674332), (index: 308,  score: 2.503336), (index: 883,  score: 2.451423), 
[1192 iters] min =  16.07ms max =  23.55ms median =  16.80ms mean =  16.79ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
cortex-A78 @ 1 thread @ 2.2GHz tinynn ptq int8 *fake*
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 990,  score: 15.554351), (index: 957,  score: 15.554351), (index: 956,  score: 15.554351), 
[634 iters] min =  30.69ms max =  32.47ms median =  31.60ms mean =  31.55ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 910,  score: 14.773200), (index: 892,  score: 14.773200), (index: 641,  score: 14.773200), 
[427 iters] min =  45.55ms max =  48.61ms median =  46.99ms mean =  46.90ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 819,  score: 13.587024), (index: 818,  score: 13.587024), (index: 785,  score: 12.763567), 
[265 iters] min =  73.84ms max =  77.41ms median =  75.73ms mean =  75.60ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 11.310929), (index: 108,  score: 6.861964), (index: 310,  score: 5.504652), 
[968 iters] min =  20.40ms max =  20.92ms median =  20.68ms mean =  20.66ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.640327), (index: 883,  score: 3.666040), (index: 712,  score: 3.530261), 
[664 iters] min =  29.69ms max =  30.48ms median =  30.18ms mean =  30.15ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 5.184752), (index: 506,  score: 3.923597), (index: 644,  score: 3.573275), 
[419 iters] min =  46.99ms max =  48.21ms median =  47.82ms mean =  47.75ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 6.443181), (index: 905,  score: 3.692160), (index: 971,  score: 3.474974), 
[393 iters] min =  50.04ms max =  54.44ms median =  50.96ms mean =  50.97ms
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 5.906343), (index: 310,  score: -4.200066), (index: 308,  score: -4.725074), 
[257 iters] min =  76.13ms max =  80.59ms median =  78.01ms mean =  77.97ms
mobilenetv3_large_100 model doesn't exist!!!
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
cortex-A78 @ 1 thread @ 2.2GHz onnx-tf dynamic int8, which will use QSymmS8
$ MODEL=ALL make run-tflite-perf
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 35 nodes delegated out of 831 nodes with 35 partitions.

INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 12.656642), (index: 108,  score: 5.208982), (index: 984,  score: 4.614052), 
[393 iters] min =  47.14ms max =  52.47ms median =  50.95ms mean =  50.95ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 14.401400), (index: 512,  score: 7.133657), (index: 326,  score: 6.300667), 
[266 iters] min =  74.48ms max =  86.93ms median =  75.07ms mean =  75.41ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 12.294003), (index: 108,  score: 4.097857), (index: 644,  score: 4.059546), 
[165 iters] min = 112.97ms max = 125.55ms median = 121.02ms mean = 121.25ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 11.656082), (index: 309,  score: 4.865403), (index: 883,  score: 4.670465), 
[392 iters] min =  50.57ms max =  53.85ms median =  50.91ms mean =  51.04ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 14.615710), (index: 720,  score: 5.028010), (index: 89,  score: 4.631391), 
[305 iters] min =  65.05ms max =  69.67ms median =  65.52ms mean =  65.74ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 14.904846), (index: 310,  score: 4.374226), (index: 309,  score: 4.088094), 
[219 iters] min =  85.55ms max =  92.39ms median =  91.46ms mean =  91.45ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating tflite runtime interpreter: edgenext_xx_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#996 is a dynamic-sized tensor).
(index: 985,  score: 10.574258), (index: 310,  score: 5.127322), (index: 309,  score: 4.813240), 
[350 iters] min =  56.69ms max =  57.53ms median =  57.16ms mean =  57.15ms
Creating tflite runtime interpreter: edgenext_x_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#1489 is a dynamic-sized tensor).
(index: 985,  score: 9.733109), (index: 309,  score: 4.522947), (index: 308,  score: 3.611678), 
[190 iters] min = 101.79ms max = 114.17ms median = 105.26ms mean = 105.32ms
Creating tflite runtime interpreter: edgenext_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#1489 is a dynamic-sized tensor).
(index: 985,  score: 12.168671), (index: 309,  score: 4.481769), (index: 308,  score: 3.972034), 
[141 iters] min = 142.12ms max = 143.33ms median = 142.72ms mean = 142.74ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 985,  score: 8.845340), (index: 309,  score: 3.012393), (index: 89,  score: 2.800360), 
[368 iters] min =  53.70ms max =  57.60ms median =  54.28ms mean =  54.49ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 985,  score: 8.063389), (index: 309,  score: 2.647400), (index: 308,  score: 2.150668), 
[220 iters] min =  89.54ms max =  96.99ms median =  90.90ms mean =  91.03ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 985,  score: 8.255550), (index: 557,  score: 2.322341), (index: 309,  score: 2.029139), 
[153 iters] min = 130.78ms max = 133.82ms median = 131.38ms mean = 131.44ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 985,  score: 8.210611), (index: 309,  score: 2.192470), (index: 132,  score: 1.299099), 
[115 iters] min = 161.27ms max = 180.04ms median = 174.38ms mean = 174.96ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 985,  score: 8.838170), (index: 308,  score: 2.144078), (index: 301,  score: 2.063063), 
[89 iters] min = 222.64ms max = 229.95ms median = 225.57ms mean = 225.70ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 985,  score: 8.673342), (index: 309,  score: 2.117110), (index: 494,  score: 1.783873), 
[73 iters] min = 268.11ms max = 280.99ms median = 277.46ms mean = 277.76ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 985,  score: 8.597152), (index: 309,  score: 2.462746), (index: 883,  score: 2.262056), 
[60 iters] min = 334.46ms max = 337.80ms median = 336.17ms mean = 336.13ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 985,  score: 12.612990), (index: 309,  score: 6.408935), (index: 883,  score: 6.122792), 
[386 iters] min =  51.66ms max =  53.13ms median =  51.89ms mean =  51.92ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 985,  score: 11.732212), (index: 951,  score: 6.617014), (index: 723,  score: 5.806361), 
[159 iters] min = 116.51ms max = 127.74ms median = 126.55ms mean = 126.43ms
Creating tflite runtime interpreter: mobilevit_small
(index: 985,  score: 10.606143), (index: 838,  score: 4.171906), (index: 309,  score: 4.077430), 
[118 iters] min = 168.88ms max = 171.00ms median = 169.47ms mean = 169.53ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 11.371873), (index: 949,  score: 4.906947), (index: 904,  score: 4.606572), 
[1086 iters] min =  17.45ms max =  18.73ms median =  18.42ms mean =  18.42ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 11.173519), (index: 111,  score: 3.877256), (index: 783,  score: 3.428816), 
[800 iters] min =  24.69ms max =  36.96ms median =  24.93ms mean =  25.01ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.933888), (index: 326,  score: 3.711475), (index: 324,  score: 3.631554), 
[597 iters] min =  33.30ms max =  36.03ms median =  33.46ms mean =  33.55ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.975584), (index: 309,  score: 3.963905), (index: 310,  score: 3.277127), 
[398 iters] min =  50.03ms max =  61.86ms median =  50.22ms mean =  50.36ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 8.152997), (index: 113,  score: -5.376539), (index: 310,  score: -5.619974), 
[196 iters] min = 102.10ms max = 103.59ms median = 102.43ms mean = 102.50ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.779805), (index: 310,  score: 2.848756), (index: 308,  score: 2.550093), 
[912 iters] min =  20.52ms max =  22.66ms median =  21.94ms mean =  21.94ms
Creating tflite runtime interpreter: tf_efficientnetv2_b0
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#649 is a dynamic-sized tensor).
(index: 985,  score: 9.519145), (index: 309,  score: 2.452715), (index: 310,  score: 2.307111), 
[418 iters] min =  47.34ms max =  51.05ms median =  47.67ms mean =  47.87ms
Creating tflite runtime interpreter: tf_efficientnetv2_b1
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#788 is a dynamic-sized tensor).
(index: 985,  score: 9.741409), (index: 309,  score: 2.442716), (index: 310,  score: 2.206350), 
[271 iters] min =  71.02ms max =  75.32ms median =  73.93ms mean =  73.96ms
Creating tflite runtime interpreter: tf_efficientnetv2_b2
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#822 is a dynamic-sized tensor).
(index: 985,  score: 10.074444), (index: 883,  score: 2.494984), (index: 309,  score: 2.232294), 
[196 iters] min = 101.63ms max = 103.59ms median = 102.02ms mean = 102.07ms
Creating tflite runtime interpreter: tf_efficientnetv2_b3
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#958 is a dynamic-sized tensor).
(index: 985,  score: 8.897607), (index: 955,  score: 2.766511), (index: 310,  score: 2.308449), 
[119 iters] min = 167.57ms max = 169.85ms median = 168.07ms mean = 168.17ms
cortex-A78 @ 1 thread @ 2.2GHz onnx-tf fp32 & fp16 & bf16(a bit slower)
$ MODEL=ALL make run-tflite-perf
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 35 nodes delegated out of 831 nodes with 35 partitions.

INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 11.767029), (index: 644,  score: 4.848304), (index: 108,  score: 3.925714), 
[337 iters] min =  59.06ms max =  59.97ms median =  59.45ms mean =  59.46ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 13.112433), (index: 89,  score: 4.162668), (index: 984,  score: 4.077538), 
[220 iters] min =  90.74ms max =  91.55ms median =  91.18ms mean =  91.18ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 12.485476), (index: 22,  score: 3.693241), (index: 309,  score: 3.691998), 
[128 iters] min = 156.56ms max = 158.40ms median = 157.20ms mean = 157.22ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001735), (index: 310,  score: 4.622922), 
[298 iters] min =  62.93ms max =  67.47ms median =  67.22ms mean =  67.15ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334187), (index: 720,  score: 4.178124), 
[208 iters] min =  95.89ms max =  97.41ms median =  96.46ms mean =  96.46ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.233635), (index: 309,  score: 3.921286), (index: 310,  score: 3.807556), 
[135 iters] min = 140.53ms max = 149.77ms median = 149.26ms mean = 149.07ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating tflite runtime interpreter: edgenext_xx_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#996 is a dynamic-sized tensor).
(index: 985,  score: 10.885461), (index: 309,  score: 4.954113), (index: 310,  score: 4.638608), 
[394 iters] min =  50.38ms max =  51.01ms median =  50.77ms mean =  50.77ms
Creating tflite runtime interpreter: edgenext_x_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#1489 is a dynamic-sized tensor).
(index: 985,  score: 9.799909), (index: 309,  score: 4.595185), (index: 308,  score: 3.817010), 
[214 iters] min =  92.79ms max =  94.07ms median =  93.51ms mean =  93.49ms
Creating tflite runtime interpreter: edgenext_small
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#1489 is a dynamic-sized tensor).
(index: 985,  score: 12.156299), (index: 309,  score: 4.532577), (index: 308,  score: 4.049805), 
[114 iters] min = 174.73ms max = 176.32ms median = 175.62ms mean = 175.62ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 985,  score: 8.315767), (index: 309,  score: 2.612426), (index: 584,  score: 2.352666), 
[310 iters] min =  63.88ms max =  65.83ms median =  64.51ms mean =  64.52ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 985,  score: 8.129782), (index: 309,  score: 2.389380), (index: 308,  score: 1.880313), 
[167 iters] min = 112.20ms max = 121.03ms median = 119.99ms mean = 119.80ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 985,  score: 8.256241), (index: 557,  score: 2.220457), (index: 309,  score: 1.944935), 
[106 iters] min = 189.06ms max = 190.89ms median = 189.81ms mean = 189.80ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 985,  score: 8.282048), (index: 309,  score: 1.962256), (index: 883,  score: 1.285460), 
[74 iters] min = 256.42ms max = 272.96ms median = 272.14ms mean = 271.79ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 985,  score: 9.099127), (index: 308,  score: 2.259560), (index: 301,  score: 2.159019), 
[54 iters] min = 369.93ms max = 371.42ms median = 370.57ms mean = 370.62ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 985,  score: 8.888693), (index: 494,  score: 2.104596), (index: 309,  score: 1.869223), 
[42 iters] min = 479.46ms max = 480.57ms median = 480.01ms mean = 480.02ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 985,  score: 8.531492), (index: 883,  score: 2.249018), (index: 309,  score: 2.237880), 
[33 iters] min = 605.61ms max = 612.58ms median = 610.26ms mean = 610.19ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 985,  score: 12.652470), (index: 309,  score: 6.357603), (index: 308,  score: 6.236125), 
[344 iters] min =  57.92ms max =  58.76ms median =  58.25ms mean =  58.27ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 985,  score: 12.998843), (index: 89,  score: 6.411968), (index: 308,  score: 5.775461), 
[138 iters] min = 133.80ms max = 145.94ms median = 145.41ms mean = 144.97ms
Creating tflite runtime interpreter: mobilevit_small
(index: 985,  score: 10.661427), (index: 838,  score: 4.319447), (index: 309,  score: 4.076353), 
[90 iters] min = 222.47ms max = 224.21ms median = 223.57ms mean = 223.56ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 11.427817), (index: 308,  score: 3.451130), (index: 309,  score: 3.319763), 
[623 iters] min =  31.95ms max =  32.36ms median =  32.14ms mean =  32.14ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409034), (index: 113,  score: 3.385414), 
[473 iters] min =  42.03ms max =  42.64ms median =  42.32ms mean =  42.32ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186352), (index: 644,  score: 3.177924), 
[327 iters] min =  60.98ms max =  61.75ms median =  61.33ms mean =  61.33ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341186), (index: 310,  score: 2.929489), 
[194 iters] min =  98.58ms max = 103.79ms median = 103.27ms mean = 103.22ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.495987), (index: 113,  score: -4.947908), (index: 310,  score: -5.267951), 
[74 iters] min = 272.02ms max = 273.67ms median = 272.55ms mean = 272.56ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.592711), (index: 308,  score: 2.354277), (index: 310,  score: 2.337051), 
[766 iters] min =  24.62ms max =  27.07ms median =  26.16ms mean =  26.13ms
Creating tflite runtime interpreter: tf_efficientnetv2_b0
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#649 is a dynamic-sized tensor).
(index: 985,  score: 9.554760), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[237 iters] min =  84.00ms max =  84.86ms median =  84.39ms mean =  84.40ms
Creating tflite runtime interpreter: tf_efficientnetv2_b1
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#788 is a dynamic-sized tensor).
(index: 985,  score: 9.484579), (index: 861,  score: 2.258523), (index: 309,  score: 2.134490), 
[150 iters] min = 132.98ms max = 134.18ms median = 133.44ms mean = 133.45ms
Creating tflite runtime interpreter: tf_efficientnetv2_b2
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#822 is a dynamic-sized tensor).
(index: 985,  score: 9.816823), (index: 883,  score: 2.518672), (index: 113,  score: 2.046143), 
[108 iters] min = 185.07ms max = 186.02ms median = 185.50ms mean = 185.51ms
Creating tflite runtime interpreter: tf_efficientnetv2_b3
WARNING: Attempting to use a delegate that only supports static-sized tensors with a graph that has dynamic-sized tensors (tensor#958 is a dynamic-sized tensor).
(index: 985,  score: 9.089396), (index: 955,  score: 2.892823), (index: 947,  score: 2.188147), 
[63 iters] min = 319.86ms max = 322.55ms median = 320.89ms mean = 320.94ms

onnx

commit id: ccb73fd827d29f69b1b5dfcbd4c27188b2364f0d

cortex-A78 @ 1 thread @ 2.2GHz fp32
$ MODEL=ALL make run-onnxruntime-perf 
INFO: Using num_threads == 1
INFO: Using CPU backend
Creating onnx runtime session: efficientformerv2_s0
(index: 985,  score: 11.767027), (index: 644,  score: 4.848296), (index: 108,  score: 3.925725), 
[315 iters] min =  63.01ms max =  64.71ms median =  63.52ms mean =  63.54ms
Creating onnx runtime session: efficientformerv2_s1
(index: 985,  score: 13.112438), (index: 89,  score: 4.162661), (index: 984,  score: 4.077526), 
[205 iters] min =  97.14ms max =  99.73ms median =  97.87ms mean =  97.90ms
Creating onnx runtime session: efficientformerv2_s2
(index: 985,  score: 12.485476), (index: 22,  score: 3.693230), (index: 309,  score: 3.692003), 
[120 iters] min = 166.99ms max = 169.06ms median = 167.91ms mean = 167.90ms
Creating onnx runtime session: SwiftFormer_XS
(index: 985,  score: 11.914163), (index: 883,  score: 5.001734), (index: 310,  score: 4.622918), 
[282 iters] min =  70.27ms max =  73.70ms median =  70.89ms mean =  70.93ms
Creating onnx runtime session: SwiftFormer_S
(index: 985,  score: 12.528481), (index: 89,  score: 4.334188), (index: 720,  score: 4.178124), 
[194 iters] min = 101.17ms max = 106.83ms median = 103.18ms mean = 103.26ms
Creating onnx runtime session: SwiftFormer_L1
(index: 985,  score: 13.233635), (index: 309,  score: 3.921291), (index: 310,  score: 3.807557), 
[129 iters] min = 154.54ms max = 158.43ms median = 155.85ms mean = 155.88ms
Creating onnx runtime session: EMO_1M
(index: 985,  score: 10.011187), (index: 309,  score: 4.270288), (index: 310,  score: 3.913450), 
[403 iters] min =  49.11ms max =  52.89ms median =  49.59ms mean =  49.75ms
Creating onnx runtime session: EMO_2M
(index: 985,  score: 9.367957), (index: 309,  score: 3.259868), (index: 308,  score: 3.008149), 
[272 iters] min =  72.87ms max =  76.64ms median =  73.36ms mean =  73.58ms
Creating onnx runtime session: EMO_5M
(index: 985,  score: 9.141464), (index: 883,  score: 2.990551), (index: 308,  score: 2.454388), 
[157 iters] min = 126.94ms max = 130.64ms median = 127.59ms mean = 127.69ms
Creating onnx runtime session: EMO_6M
(index: 985,  score: 9.396774), (index: 883,  score: 2.240933), (index: 309,  score: 2.083860), 
[148 iters] min = 133.66ms max = 137.31ms median = 135.28ms mean = 135.39ms
Creating onnx runtime session: edgenext_xx_small
(index: 985,  score: 10.885463), (index: 309,  score: 4.954113), (index: 310,  score: 4.638608), 
[493 iters] min =  40.35ms max =  41.12ms median =  40.63ms mean =  40.65ms
Creating onnx runtime session: edgenext_x_small
(index: 985,  score: 9.799908), (index: 309,  score: 4.595183), (index: 308,  score: 3.817008), 
[262 iters] min =  75.08ms max =  77.39ms median =  76.60ms mean =  76.62ms
Creating onnx runtime session: edgenext_small
(index: 985,  score: 12.156298), (index: 309,  score: 4.532578), (index: 308,  score: 4.049806), 
[139 iters] min = 142.70ms max = 148.03ms median = 143.79ms mean = 144.01ms
Creating onnx runtime session: mobilevitv2_050
(index: 985,  score: 8.315781), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[358 iters] min =  54.95ms max =  59.93ms median =  55.75ms mean =  55.99ms
Creating onnx runtime session: mobilevitv2_075
(index: 985,  score: 8.129787), (index: 309,  score: 2.389381), (index: 308,  score: 1.880314), 
[190 iters] min = 104.20ms max = 112.60ms median = 104.82ms mean = 105.36ms
Creating onnx runtime session: mobilevitv2_100
(index: 985,  score: 8.256272), (index: 557,  score: 2.220435), (index: 309,  score: 1.944910), 
[117 iters] min = 170.18ms max = 178.25ms median = 171.52ms mean = 172.08ms
Creating onnx runtime session: mobilevitv2_125
(index: 985,  score: 8.281981), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[79 iters] min = 242.18ms max = 264.05ms median = 253.34ms mean = 253.41ms
Creating onnx runtime session: mobilevitv2_150
(index: 985,  score: 9.098927), (index: 308,  score: 2.259604), (index: 301,  score: 2.159042), 
[58 iters] min = 345.23ms max = 355.02ms median = 347.09ms mean = 347.29ms
Creating onnx runtime session: mobilevitv2_175
(index: 985,  score: 8.888681), (index: 494,  score: 2.104774), (index: 309,  score: 1.869403), 
[44 iters] min = 457.30ms max = 464.03ms median = 459.28ms mean = 459.70ms
Creating onnx runtime session: mobilevitv2_200
(index: 985,  score: 8.531374), (index: 883,  score: 2.248779), (index: 309,  score: 2.237854), 
[35 iters] min = 580.38ms max = 606.12ms median = 582.96ms mean = 585.05ms
Creating onnx runtime session: mobilevit_xx_small
(index: 985,  score: 12.652473), (index: 309,  score: 6.357603), (index: 308,  score: 6.236127), 
[380 iters] min =  51.82ms max =  56.44ms median =  52.52ms mean =  52.65ms
Creating onnx runtime session: mobilevit_x_small
(index: 985,  score: 12.998842), (index: 89,  score: 6.411969), (index: 308,  score: 5.775460), 
[161 iters] min = 122.51ms max = 131.09ms median = 124.18ms mean = 124.48ms
Creating onnx runtime session: mobilevit_small
(index: 985,  score: 10.661427), (index: 838,  score: 4.319448), (index: 309,  score: 4.076354), 
[101 iters] min = 197.84ms max = 206.19ms median = 198.82ms mean = 199.37ms
Creating onnx runtime session: LeViT_128S
(index: 985,  score: 11.427822), (index: 308,  score: 3.451136), (index: 309,  score: 3.319764), 
[734 iters] min =  25.11ms max =  30.29ms median =  27.15ms mean =  27.28ms
Creating onnx runtime session: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409033), (index: 113,  score: 3.385417), 
[561 iters] min =  35.42ms max =  38.11ms median =  35.66ms mean =  35.69ms
Creating onnx runtime session: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186356), (index: 644,  score: 3.177926), 
[380 iters] min =  49.51ms max =  63.31ms median =  52.58ms mean =  52.75ms
Creating onnx runtime session: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341184), (index: 310,  score: 2.929484), 
[232 iters] min =  86.16ms max =  87.40ms median =  86.52ms mean =  86.55ms
Creating onnx runtime session: resnet50
(index: 985,  score: 7.495985), (index: 113,  score: -4.947910), (index: 310,  score: -5.267947), 
[69 iters] min = 292.98ms max = 303.70ms median = 293.68ms mean = 294.00ms
Creating onnx runtime session: mobilenetv3_large_100
(index: 985,  score: 9.592711), (index: 308,  score: 2.354275), (index: 310,  score: 2.337051), 
[641 iters] min =  31.04ms max =  32.13ms median =  31.22ms mean =  31.23ms
Creating onnx runtime session: tf_efficientnetv2_b0
(index: 985,  score: 9.554757), (index: 309,  score: 2.378345), (index: 108,  score: 2.289132), 
[273 iters] min =  73.20ms max =  75.04ms median =  73.50ms mean =  73.53ms
Creating onnx runtime session: tf_efficientnetv2_b1
(index: 985,  score: 9.484577), (index: 861,  score: 2.258525), (index: 309,  score: 2.134489), 
[176 iters] min = 111.23ms max = 118.58ms median = 113.62ms mean = 113.69ms
Creating onnx runtime session: tf_efficientnetv2_b2
(index: 985,  score: 9.816820), (index: 883,  score: 2.518670), (index: 113,  score: 2.046142), 
[126 iters] min = 158.95ms max = 164.34ms median = 159.52ms mean = 159.68ms
Creating onnx runtime session: tf_efficientnetv2_b3
(index: 985,  score: 9.089397), (index: 955,  score: 2.892823), (index: 947,  score: 2.188145), 
[74 iters] min = 266.32ms max = 275.08ms median = 270.98ms mean = 271.07ms
cortex-A78 @ 1 thread @ 2.2GHz fp16?!

只有LeViT/resnet50是正常的,但是LeViT系列性能大降,只有resnet50出现了性能提升

INFO: Using num_threads == 1
INFO: Using CPU backend
Creating onnx runtime session: efficientformerv2_s0
(index: 375,  score: 312.645630), (index: 270,  score: 310.344360), (index: 625,  score: 308.174011), 
[319 iters] min =  60.57ms max =  63.47ms median =  62.93ms mean =  62.79ms
Creating onnx runtime session: efficientformerv2_s1
(index: 110,  score: 3713.058594), (index: 519,  score: 3310.613281), (index: 798,  score: 3293.118652), 
[215 iters] min =  90.24ms max =  94.11ms median =  93.60ms mean =  93.41ms
Creating onnx runtime session: efficientformerv2_s2
(index: 68,  score: 1192.941772), (index: 238,  score: 1122.094238), (index: 542,  score: 1113.852417), 
[132 iters] min = 147.54ms max = 154.09ms median = 152.59ms mean = 152.21ms
Creating onnx runtime session: SwiftFormer_XS
(index: 723,  score: 6.027040), (index: 721,  score: 5.818944), (index: 879,  score: 5.662380), 
[304 iters] min =  63.47ms max =  66.52ms median =  66.00ms mean =  65.83ms
Creating onnx runtime session: SwiftFormer_S
(index: 408,  score: 896.605103), (index: 207,  score: 866.244507), (index: 205,  score: 807.019104), 
[228 iters] min =  85.17ms max =  88.95ms median =  88.38ms mean =  88.10ms
Creating onnx runtime session: SwiftFormer_L1
(index: 904,  score: 8.103521), (index: 828,  score: 6.649522), (index: 555,  score: 6.419710), 
[152 iters] min = 127.93ms max = 133.21ms median = 132.31ms mean = 132.02ms
Creating onnx runtime session: EMO_1M
(index: 363,  score: 7.078125), (index: 328,  score: 5.394531), (index: 769,  score: 5.242188), 
[403 iters] min =  48.11ms max =  50.42ms median =  49.84ms mean =  49.74ms
Creating onnx runtime session: EMO_2M
(index: 699,  score: 3.312500), (index: 520,  score: 3.267578), (index: 488,  score: 3.097656), 
[282 iters] min =  68.79ms max =  72.36ms median =  71.24ms mean =  71.13ms
Creating onnx runtime session: EMO_5M
(index: 741,  score: 5.875000), (index: 846,  score: 5.621094), (index: 885,  score: 5.074219), 
[174 iters] min = 111.14ms max = 116.15ms median = 115.46ms mean = 115.16ms
Creating onnx runtime session: EMO_6M
(index: 983,  score: 2.837891), (index: 2,  score: 2.804688), (index: 147,  score: 2.763672), 
[164 iters] min = 117.81ms max = 123.16ms median = 122.49ms mean = 122.22ms
Creating onnx runtime session: edgenext_xx_small
2023-10-28 11:38:31.240536104 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.240936373 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.260037294 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.260121968 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.267220135 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.267296138 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.274348799 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.274425410 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.281498616 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.281570138 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.288618063 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.288694930 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.295689317 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.295761512 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.302783516 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.302856190 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.309880530 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.309949429 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
2023-10-28 11:38:31.316873030 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add_1'
2023-10-28 11:38:31.316972681 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.1/pos_embd/Add'
(index: 818,  score: 6.308594), (index: 819,  score: 6.007812), (index: 898,  score: 5.937500), 
[419 iters] min =  46.43ms max =  48.45ms median =  47.86ms mean =  47.78ms
Creating onnx runtime session: edgenext_x_small
2023-10-28 11:38:56.593773458 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.594107998 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.617526908 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.617604927 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.626604754 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.626685620 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.635602212 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.635680679 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.644585623 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.644662969 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.653569833 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.653643179 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.662542587 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.662617341 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.671522733 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.671598672 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.680509631 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.680588930 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:38:56.689508818 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:38:56.689582101 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
(index: 349,  score: 5.171875), (index: 851,  score: 4.894531), (index: 473,  score: 4.738281), 
[233 iters] min =  83.38ms max =  86.64ms median =  85.96ms mean =  85.84ms
Creating onnx runtime session: edgenext_small
2023-10-28 11:39:22.034059509 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.034410208 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.057924402 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.058011829 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.066811867 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.066890142 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.075668611 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.075745702 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.084541580 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.084617423 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.093414805 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.093490455 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.102308254 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.102390177 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.111261065 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.111336396 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.120235381 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.120313400 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
2023-10-28 11:39:22.129164223 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add_1'
2023-10-28 11:39:22.129236130 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Add node '/stages.1/stages.1.2/pos_embd/Add'
(index: 968,  score: 3.546875), (index: 103,  score: 2.960938), (index: 68,  score: 2.880859), 
[128 iters] min = 152.10ms max = 158.37ms median = 157.26ms mean = 156.89ms
Creating onnx runtime session: mobilevitv2_050
(index: 971,  score: 5.484375), (index: 111,  score: 4.992188), (index: 892,  score: 4.632812), 
[367 iters] min =  52.86ms max =  58.67ms median =  54.52ms mean =  54.51ms
Creating onnx runtime session: mobilevitv2_075
(index: 559,  score: 8.578125), (index: 646,  score: 5.570312), (index: 506,  score: 4.902344), 
[219 iters] min =  89.01ms max =  92.89ms median =  91.82ms mean =  91.67ms
Creating onnx runtime session: mobilevitv2_100
(index: 677,  score: 4.464844), (index: 733,  score: 4.078125), (index: 765,  score: 3.970703), 
[145 iters] min = 134.11ms max = 140.87ms median = 138.30ms mean = 138.10ms
Creating onnx runtime session: mobilevitv2_125
(index: 646,  score: 6.011719), (index: 506,  score: 5.980469), (index: 346,  score: 3.451172), 
[105 iters] min = 187.20ms max = 192.35ms median = 191.31ms mean = 190.96ms
Creating onnx runtime session: mobilevitv2_150
(index: 271,  score: 3.404297), (index: 269,  score: 3.142578), (index: 990,  score: 3.023438), 
[80 iters] min = 248.14ms max = 253.32ms median = 252.25ms mean = 251.88ms
Creating onnx runtime session: mobilevitv2_175
(index: 271,  score: 4.156250), (index: 194,  score: 3.779297), (index: 369,  score: 3.632812), 
[63 iters] min = 315.05ms max = 320.30ms median = 319.05ms mean = 318.52ms
Creating onnx runtime session: mobilevitv2_200
(index: 855,  score: 5.050781), (index: 508,  score: 4.976562), (index: 689,  score: 4.855469), 
[49 iters] min = 398.93ms max = 412.54ms median = 411.21ms mean = 410.29ms
Creating onnx runtime session: mobilevit_xx_small
(index: 813,  score: 152.250000), (index: 662,  score: 100.187500), (index: 401,  score: 61.343750), 
[316 iters] min =  61.56ms max =  64.40ms median =  63.58ms mean =  63.46ms
Creating onnx runtime session: mobilevit_x_small
(index: 779,  score: 35.718750), (index: 687,  score: 32.218750), (index: 771,  score: 24.000000), 
[159 iters] min = 121.95ms max = 131.49ms median = 126.15ms mean = 125.99ms
Creating onnx runtime session: mobilevit_small
(index: 806,  score: 28.187500), (index: 411,  score: 25.578125), (index: 778,  score: 22.906250), 
[103 iters] min = 191.30ms max = 206.44ms median = 196.11ms mean = 195.87ms
Creating onnx runtime session: LeViT_128S
(index: 985,  score: 11.452311), (index: 308,  score: 3.453630), (index: 309,  score: 3.344767), 
[400 iters] min =  43.41ms max =  52.68ms median =  50.60ms mean =  50.08ms
Creating onnx runtime session: LeViT_128
(index: 985,  score: 11.091269), (index: 309,  score: 3.424088), (index: 113,  score: 3.393584), 
[304 iters] min =  58.26ms max =  68.92ms median =  66.82ms mean =  65.95ms
Creating onnx runtime session: LeViT_192
(index: 985,  score: 11.600651), (index: 644,  score: 3.213440), (index: 308,  score: 3.186548), 
[246 iters] min =  73.24ms max =  83.79ms median =  82.22ms mean =  81.48ms
Creating onnx runtime session: LeViT_256
(index: 985,  score: 11.398668), (index: 108,  score: 3.284300), (index: 309,  score: 2.865213), 
[139 iters] min = 127.59ms max = 149.03ms median = 145.98ms mean = 144.26ms
Creating onnx runtime session: resnet50
(index: 985,  score: 7.519531), (index: 113,  score: -4.972656), (index: 310,  score: -5.296875), 
[93 iters] min = 202.89ms max = 223.76ms median = 218.29ms mean = 217.32ms
Creating onnx runtime session: mobilenetv3_large_100
(index: 925,  score: 4.050781), (index: 409,  score: 3.324219), (index: 635,  score: 3.097656), 
[629 iters] min =  30.84ms max =  32.18ms median =  31.87ms mean =  31.80ms
Creating onnx runtime session: tf_efficientnetv2_b0
2023-10-28 11:46:34.589473728 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.602116522 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.608306380 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.614467245 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.620581293 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.626663211 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.632687977 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.638748327 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.644780005 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
2023-10-28 11:46:34.650823715 [W:onnxruntime:, constant_folding.cc:214 ApplyImpl] Could not find a CPU kernel and hence can't constant fold Ceil node '/conv_stem/Ceil'
Got dynamic batch size. Setting output batch size to 1.
(index: 953,  score: 4.953125), (index: 470,  score: 4.746094), (index: 489,  score: 4.230469), 
[301 iters] min =  64.38ms max =  67.21ms median =  66.80ms mean =  66.64ms
cortex-A78 @ 1 thread @ 2.2GHz static int8
INFO: Using num_threads == 1
INFO: Using CPU backend
Creating onnx runtime session: efficientformerv2_s0
(index: 904,  score: 9.301314), (index: 905,  score: 8.267836), (index: 794,  score: 8.038173), 
[362 iters] min =  53.88ms max =  58.71ms median =  55.28ms mean =  55.31ms
Creating onnx runtime session: efficientformerv2_s1
(index: 985,  score: 8.869938), (index: 644,  score: 6.363216), (index: 108,  score: 6.266804), 
[246 iters] min =  79.51ms max =  87.16ms median =  81.25ms mean =  81.32ms
Creating onnx runtime session: efficientformerv2_s2
(index: 641,  score: 6.804350), (index: 906,  score: 6.651443), (index: 810,  score: 6.039816), 
[157 iters] min = 125.35ms max = 131.91ms median = 128.01ms mean = 128.07ms
Creating onnx runtime session: SwiftFormer_XS
(index: 985,  score: 10.305935), (index: 308,  score: 4.524557), (index: 883,  score: 3.896146), 
[358 iters] min =  54.80ms max =  56.37ms median =  56.04ms mean =  55.93ms
Creating onnx runtime session: SwiftFormer_S
(index: 985,  score: 16.637768), (index: 309,  score: 6.884593), (index: 723,  score: 6.081391), 
[280 iters] min =  69.98ms max =  71.96ms median =  71.65ms mean =  71.48ms
Creating onnx runtime session: SwiftFormer_L1
(index: 985,  score: 14.329005), (index: 904,  score: 8.160891), (index: 905,  score: 4.365128), 
[208 iters] min =  94.18ms max =  96.93ms median =  96.45ms mean =  96.22ms
Creating onnx runtime session: EMO_1M
(index: 949,  score: 6.828766), (index: 533,  score: 6.736485), (index: 109,  score: 6.644205), 
[599 iters] min =  32.40ms max =  33.88ms median =  33.54ms mean =  33.41ms
Creating onnx runtime session: EMO_2M
(index: 985,  score: 9.498310), (index: 309,  score: 3.749333), (index: 308,  score: 3.582696), 
[425 iters] min =  45.65ms max =  47.76ms median =  47.21ms mean =  47.09ms
Creating onnx runtime session: EMO_5M
(index: 553,  score: 6.486908), (index: 885,  score: 6.240570), (index: 977,  score: 5.255217), 
[284 iters] min =  68.93ms max =  71.35ms median =  70.81ms mean =  70.64ms
Creating onnx runtime session: EMO_6M
(index: 722,  score: 3.215647), (index: 624,  score: 2.756269), (index: 368,  score: 2.572518), 
[268 iters] min =  73.07ms max =  75.97ms median =  75.04ms mean =  74.86ms
Creating onnx runtime session: edgenext_xx_small
(index: 985,  score: 10.135961), (index: 883,  score: 4.106812), (index: 308,  score: 4.019433), 
[457 iters] min =  42.69ms max =  44.26ms median =  43.94ms mean =  43.81ms
Creating onnx runtime session: edgenext_x_small
(index: 985,  score: 7.823123), (index: 318,  score: 3.871236), (index: 452,  score: 3.387332), 
[271 iters] min =  72.17ms max =  74.58ms median =  74.16ms mean =  73.97ms
Creating onnx runtime session: edgenext_small
(index: 985,  score: 10.629969), (index: 108,  score: 5.656313), (index: 883,  score: 4.681087), 
[179 iters] min = 110.11ms max = 113.29ms median = 112.61ms mean = 112.35ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
Creating onnx runtime session: mobilevit_xx_small
(index: 530,  score: 8.487267), (index: 646,  score: 7.858580), (index: 688,  score: 6.391645), 
[463 iters] min =  42.04ms max =  43.86ms median =  43.35ms mean =  43.23ms
Creating onnx runtime session: mobilevit_x_small
(index: 985,  score: 11.108162), (index: 951,  score: 6.572329), (index: 310,  score: 6.294625), 
[279 iters] min =  70.36ms max =  72.55ms median =  72.09ms mean =  71.91ms
Creating onnx runtime session: mobilevit_small
(index: 985,  score: 8.687240), (index: 626,  score: 5.894913), (index: 619,  score: 5.894913), 
[199 iters] min =  98.51ms max = 101.73ms median = 101.14ms mean = 100.88ms
Creating onnx runtime session: LeViT_128S
(index: 985,  score: 10.046530), (index: 720,  score: 4.465124), (index: 605,  score: 3.906984), 
[1363 iters] min =  14.00ms max =  15.05ms median =  14.74ms mean =  14.68ms
Creating onnx runtime session: LeViT_128
(index: 985,  score: 11.506492), (index: 794,  score: 4.728695), (index: 854,  score: 4.255826), 
[969 iters] min =  19.76ms max =  21.04ms median =  20.75ms mean =  20.65ms
Creating onnx runtime session: LeViT_192
(index: 985,  score: 11.009346), (index: 644,  score: 3.878292), (index: 949,  score: 3.628080), 
[770 iters] min =  24.85ms max =  30.03ms median =  26.07ms mean =  25.99ms
Creating onnx runtime session: LeViT_256
(index: 985,  score: 11.014970), (index: 310,  score: 3.697883), (index: 309,  score: 3.697883), 
[530 iters] min =  36.20ms max =  39.45ms median =  37.98ms mean =  37.78ms
Creating onnx runtime session: resnet50
(index: 985,  score: 7.083403), (index: 310,  score: -4.857191), (index: 113,  score: -5.261957), 
[260 iters] min =  74.92ms max =  81.04ms median =  77.17ms mean =  77.03ms
Creating onnx runtime session: mobilenetv3_large_100
(index: 985,  score: 10.199331), (index: 883,  score: 2.781636), (index: 310,  score: 2.613052), 
[1329 iters] min =  14.53ms max =  17.50ms median =  15.07ms mean =  15.05ms
Creating onnx runtime session: tf_efficientnetv2_b0
(index: 985,  score: 8.849307), (index: 108,  score: 2.374204), (index: 309,  score: 2.230313), 
[690 iters] min =  27.74ms max =  31.44ms median =  29.11ms mean =  29.02ms
Creating onnx runtime session: tf_efficientnetv2_b1
(index: 985,  score: 9.477756), (index: 309,  score: 2.707930), (index: 949,  score: 1.998710), 
[452 iters] min =  42.57ms max =  54.47ms median =  44.36ms mean =  44.33ms
Creating onnx runtime session: tf_efficientnetv2_b2
(index: 985,  score: 6.901396), (index: 108,  score: 1.757903), (index: 309,  score: 1.562580), 
[332 iters] min =  58.18ms max =  62.94ms median =  60.51ms mean =  60.29ms
Creating onnx runtime session: tf_efficientnetv2_b3
(index: 985,  score: 8.195366), (index: 955,  score: 2.280450), (index: 946,  score: 2.066658), 
[198 iters] min =  97.86ms max = 104.19ms median = 101.74ms mean = 101.34ms
cortex-A78 @ 1 thread @ 2.2GHz dynamic int8 (disable conv quant, which onnx doesn't support !!!!)
INFO: Using num_threads == 1
INFO: Using CPU backend
Creating onnx runtime session: efficientformerv2_s0
(index: 985,  score: 11.767601), (index: 644,  score: 4.856317), (index: 108,  score: 3.926015), 
[320 iters] min =  61.36ms max =  64.42ms median =  62.57ms mean =  62.50ms
Creating onnx runtime session: efficientformerv2_s1
(index: 985,  score: 13.111914), (index: 89,  score: 4.162173), (index: 984,  score: 4.069082), 
[208 iters] min =  94.66ms max =  98.08ms median =  96.68ms mean =  96.54ms
Creating onnx runtime session: efficientformerv2_s2
(index: 985,  score: 12.490580), (index: 309,  score: 3.688048), (index: 22,  score: 3.679213), 
[122 iters] min = 161.80ms max = 166.13ms median = 165.37ms mean = 165.08ms
Creating onnx runtime session: SwiftFormer_XS
(index: 985,  score: 11.847700), (index: 883,  score: 4.940231), (index: 308,  score: 4.753491), 
[286 iters] min =  68.24ms max =  72.31ms median =  70.23ms mean =  70.05ms
Creating onnx runtime session: SwiftFormer_S
(index: 985,  score: 13.930529), (index: 720,  score: 4.841800), (index: 89,  score: 4.634744), 
[198 iters] min =  99.11ms max = 102.40ms median = 101.76ms mean = 101.51ms
Creating onnx runtime session: SwiftFormer_L1
(index: 985,  score: 14.378620), (index: 309,  score: 3.903602), (index: 310,  score: 3.784205), 
[133 iters] min = 147.20ms max = 152.36ms median = 151.33ms mean = 150.94ms
Creating onnx runtime session: EMO_1M
(index: 985,  score: 10.008471), (index: 309,  score: 4.282920), (index: 310,  score: 3.920927), 
[405 iters] min =  48.02ms max =  50.06ms median =  49.51ms mean =  49.38ms
Creating onnx runtime session: EMO_2M
(index: 985,  score: 9.369873), (index: 309,  score: 3.270487), (index: 308,  score: 2.998578), 
[274 iters] min =  71.24ms max =  74.19ms median =  73.31ms mean =  73.14ms
Creating onnx runtime session: EMO_5M
(index: 985,  score: 9.149606), (index: 883,  score: 2.984873), (index: 308,  score: 2.455936), 
[159 iters] min = 123.25ms max = 127.28ms median = 126.30ms mean = 126.04ms
Creating onnx runtime session: EMO_6M
(index: 985,  score: 9.386406), (index: 883,  score: 2.231557), (index: 309,  score: 2.076946), 
[150 iters] min = 130.41ms max = 137.70ms median = 133.88ms mean = 133.86ms
Creating onnx runtime session: edgenext_xx_small
(index: 985,  score: 10.854851), (index: 309,  score: 4.818978), (index: 310,  score: 4.660226), 
[596 iters] min =  32.77ms max =  36.87ms median =  33.63ms mean =  33.58ms
Creating onnx runtime session: edgenext_x_small
(index: 985,  score: 9.754297), (index: 309,  score: 4.585029), (index: 308,  score: 3.785746), 
[329 iters] min =  59.35ms max =  64.00ms median =  60.85ms mean =  60.85ms
Creating onnx runtime session: edgenext_small
(index: 985,  score: 12.141153), (index: 309,  score: 4.538023), (index: 308,  score: 4.138398), 
[201 iters] min =  97.02ms max = 100.69ms median =  99.91ms mean =  99.64ms
Creating onnx runtime session: mobilevitv2_050
(index: 985,  score: 8.300854), (index: 309,  score: 2.613225), (index: 584,  score: 2.343000), 
[360 iters] min =  53.88ms max =  56.96ms median =  55.71ms mean =  55.58ms
Creating onnx runtime session: mobilevitv2_075
(index: 985,  score: 8.126451), (index: 309,  score: 2.387401), (index: 308,  score: 1.869111), 
[192 iters] min = 101.05ms max = 105.72ms median = 104.59ms mean = 104.31ms
Creating onnx runtime session: mobilevitv2_100
(index: 985,  score: 8.271072), (index: 557,  score: 2.219984), (index: 309,  score: 1.957172), 
[120 iters] min = 162.70ms max = 169.87ms median = 168.17ms mean = 167.70ms
Creating onnx runtime session: mobilevitv2_125
(index: 985,  score: 8.280787), (index: 309,  score: 1.957819), (index: 883,  score: 1.288820), 
[82 iters] min = 240.67ms max = 248.51ms median = 247.27ms mean = 246.58ms
Creating onnx runtime session: mobilevitv2_150
(index: 985,  score: 9.107194), (index: 308,  score: 2.253815), (index: 301,  score: 2.142919), 
[59 iters] min = 333.29ms max = 344.71ms median = 341.62ms mean = 340.65ms
Creating onnx runtime session: mobilevitv2_175
(index: 985,  score: 8.886470), (index: 494,  score: 2.094772), (index: 309,  score: 1.872693), 
[45 iters] min = 441.51ms max = 457.33ms median = 450.62ms mean = 449.47ms
Creating onnx runtime session: mobilevitv2_200
(index: 985,  score: 8.529298), (index: 883,  score: 2.249700), (index: 309,  score: 2.229221), 
[36 iters] min = 563.65ms max = 577.27ms median = 572.16ms mean = 570.89ms
Creating onnx runtime session: mobilevit_xx_small
(index: 985,  score: 12.656101), (index: 309,  score: 6.405189), (index: 308,  score: 6.261666), 
[420 iters] min =  46.49ms max =  48.67ms median =  47.73ms mean =  47.64ms
Creating onnx runtime session: mobilevit_x_small
(index: 985,  score: 12.965905), (index: 89,  score: 6.380670), (index: 308,  score: 5.773078), 
[182 iters] min = 106.70ms max = 123.53ms median = 110.27ms mean = 110.19ms
Creating onnx runtime session: mobilevit_small
(index: 985,  score: 10.726731), (index: 838,  score: 4.307947), (index: 309,  score: 4.066022), 
[121 iters] min = 160.98ms max = 170.36ms median = 166.39ms mean = 166.17ms
Creating onnx runtime session: LeViT_128S
(index: 985,  score: 10.759948), (index: 949,  score: 3.963227), (index: 781,  score: 3.439202), 
[1351 iters] min =  14.24ms max =  15.12ms median =  14.87ms mean =  14.81ms
Creating onnx runtime session: LeViT_128
(index: 985,  score: 10.447086), (index: 113,  score: 3.491381), (index: 322,  score: 3.252628), 
[1022 iters] min =  18.82ms max =  23.98ms median =  19.66ms mean =  19.58ms
Creating onnx runtime session: LeViT_192
(index: 985,  score: 11.600488), (index: 326,  score: 3.805164), (index: 324,  score: 3.421825), 
[706 iters] min =  27.37ms max =  28.89ms median =  28.46ms mean =  28.36ms
Creating onnx runtime session: LeViT_256
(index: 985,  score: 12.019890), (index: 309,  score: 3.603356), (index: 310,  score: 3.501025), 
[456 iters] min =  42.35ms max =  44.70ms median =  44.10ms mean =  43.94ms
Creating onnx runtime session: resnet50
(index: 985,  score: 7.540756), (index: 113,  score: -4.925373), (index: 310,  score: -5.233062), 
[69 iters] min = 285.69ms max = 294.71ms median = 292.92ms mean = 292.21ms
Creating onnx runtime session: mobilenetv3_large_100
(index: 985,  score: 9.583168), (index: 308,  score: 2.351349), (index: 310,  score: 2.336620), 
[652 iters] min =  29.40ms max =  37.62ms median =  30.71ms mean =  30.72ms
Creating onnx runtime session: tf_efficientnetv2_b0
(index: 985,  score: 9.558366), (index: 309,  score: 2.373356), (index: 108,  score: 2.280105), 
[276 iters] min =  71.15ms max =  76.24ms median =  72.71ms mean =  72.60ms
Creating onnx runtime session: tf_efficientnetv2_b1
(index: 985,  score: 9.488265), (index: 861,  score: 2.265718), (index: 309,  score: 2.139990), 
[178 iters] min = 110.09ms max = 115.09ms median = 112.56ms mean = 112.59ms
Creating onnx runtime session: tf_efficientnetv2_b2
(index: 985,  score: 9.823639), (index: 883,  score: 2.515293), (index: 113,  score: 2.049522), 
[126 iters] min = 156.08ms max = 162.54ms median = 159.35ms mean = 159.58ms
Creating onnx runtime session: tf_efficientnetv2_b3
(index: 985,  score: 9.088434), (index: 955,  score: 2.879115), (index: 310,  score: 2.179863), 
[75 iters] min = 264.99ms max = 283.07ms median = 269.84ms mean = 269.90ms

pytorch (self built by aarch64 ubuntu20.04 docker container with llvm-14 > gcc-10)

commit id b18e1b684a7673daa3a51128aae4e75ed7aa7cbc

  • arm_compute-v23.05-bin-linux-arm64-v8.2-a-neon.tar.gz
  • torch-2.1.0.dev20230825-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
    • libopenblas.so.0
    • libgfortran-42309ea2.so.5.0.0
image
cortex-A78 @ 1 thread @ 2.2GHz trace w/ onednn+acl by gcc-10
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767033), (index: 644,  score: 4.848289), (index: 108,  score: 3.925720), 
[118 iters] min = 169.74ms max = 171.59ms median = 170.67ms mean = 170.69ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112442), (index: 89,  score: 4.162664), (index: 984,  score: 4.077511), 
[80 iters] min = 250.77ms max = 254.01ms median = 253.22ms mean = 253.17ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485486), (index: 22,  score: 3.693231), (index: 309,  score: 3.692009), 
[50 iters] min = 403.84ms max = 407.07ms median = 405.16ms mean = 405.21ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001728), (index: 310,  score: 4.622917), 
[130 iters] min = 153.29ms max = 154.60ms median = 153.82ms mean = 153.85ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528474), (index: 89,  score: 4.334189), (index: 720,  score: 4.178121), 
[97 iters] min = 205.07ms max = 207.26ms median = 206.32ms mean = 206.38ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233633), (index: 309,  score: 3.921279), (index: 310,  score: 3.807570), 
[68 iters] min = 292.75ms max = 297.65ms median = 294.09ms mean = 294.20ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011185), (index: 309,  score: 4.270287), (index: 310,  score: 3.913450), 
[169 iters] min = 116.04ms max = 119.50ms median = 118.41ms mean = 118.41ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367957), (index: 309,  score: 3.259868), (index: 308,  score: 3.008149), 
[120 iters] min = 167.19ms max = 169.09ms median = 167.91ms mean = 167.96ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141463), (index: 883,  score: 2.990551), (index: 308,  score: 2.454388), 
[78 iters] min = 255.51ms max = 259.00ms median = 257.98ms mean = 257.98ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396775), (index: 883,  score: 2.240934), (index: 309,  score: 2.083860), 
[72 iters] min = 278.13ms max = 281.19ms median = 280.00ms mean = 279.97ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885459), (index: 309,  score: 4.954109), (index: 310,  score: 4.638605), 
[200 iters] min =  98.96ms max = 101.23ms median = 100.08ms mean = 100.12ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799909), (index: 309,  score: 4.595184), (index: 308,  score: 3.817010), 
[106 iters] min = 187.55ms max = 190.51ms median = 188.93ms mean = 188.97ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156299), (index: 309,  score: 4.532576), (index: 308,  score: 4.049803), 
[64 iters] min = 312.43ms max = 315.11ms median = 313.88ms mean = 313.92ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[187 iters] min = 102.85ms max = 108.02ms median = 106.97ms mean = 106.98ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129788), (index: 309,  score: 2.389378), (index: 308,  score: 1.880310), 
[109 iters] min = 178.39ms max = 190.03ms median = 184.64ms mean = 184.18ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256273), (index: 557,  score: 2.220434), (index: 309,  score: 1.944912), 
[74 iters] min = 263.31ms max = 279.21ms median = 272.14ms mean = 272.14ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281982), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[54 iters] min = 368.82ms max = 379.29ms median = 374.07ms mean = 373.96ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098927), (index: 308,  score: 2.259606), (index: 301,  score: 2.159039), 
[41 iters] min = 486.54ms max = 494.03ms median = 489.25ms mean = 489.48ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888678), (index: 494,  score: 2.104781), (index: 309,  score: 1.869408), 
[33 iters] min = 609.74ms max = 621.30ms median = 615.93ms mean = 615.97ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531363), (index: 883,  score: 2.248764), (index: 309,  score: 2.237853), 
[27 iters] min = 755.23ms max = 772.08ms median = 765.00ms mean = 764.46ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652477), (index: 309,  score: 6.357602), (index: 308,  score: 6.236127), 
[156 iters] min = 124.97ms max = 131.10ms median = 128.07ms mean = 128.34ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998842), (index: 89,  score: 6.411968), (index: 308,  score: 5.775460), 
[78 iters] min = 257.19ms max = 264.45ms median = 258.68ms mean = 259.00ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661425), (index: 838,  score: 4.319453), (index: 309,  score: 4.076357), 
[56 iters] min = 344.86ms max = 373.12ms median = 362.88ms mean = 363.26ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427817), (index: 308,  score: 3.451130), (index: 309,  score: 3.319760), 
[312 iters] min =  63.29ms max =  74.55ms median =  63.99ms mean =  64.27ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089767), (index: 309,  score: 3.409031), (index: 113,  score: 3.385418), 
[245 iters] min =  81.31ms max =  83.03ms median =  81.67ms mean =  81.74ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186359), (index: 644,  score: 3.177923), 
[207 iters] min =  96.00ms max = 103.45ms median =  96.49ms mean =  96.72ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341188), (index: 310,  score: 2.929487), 
[128 iters] min = 154.82ms max = 159.48ms median = 155.97ms mean = 156.39ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495995), (index: 113,  score: -4.947914), (index: 310,  score: -5.267949), 
[43 iters] min = 455.58ms max = 466.64ms median = 465.50ms mean = 465.26ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592707), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[313 iters] min =  63.57ms max =  65.53ms median =  63.92ms mean =  63.98ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378345), (index: 108,  score: 2.289131), 
[151 iters] min = 124.39ms max = 134.48ms median = 133.11ms mean = 132.90ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484587), (index: 861,  score: 2.258526), (index: 309,  score: 2.134490), 
[99 iters] min = 201.87ms max = 205.13ms median = 203.06ms mean = 203.19ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518669), (index: 113,  score: 2.046141), 
[73 iters] min = 272.58ms max = 276.61ms median = 274.43ms mean = 274.32ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089396), (index: 955,  score: 2.892824), (index: 947,  score: 2.188146), 
[45 iters] min = 447.64ms max = 451.66ms median = 449.39ms mean = 449.48ms
cortex-A78 @ 1 thread @ 2.2GHz trace w/ onednn+acl by llvm-14
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767036), (index: 644,  score: 4.848290), (index: 108,  score: 3.925720), 
[107 iters] min = 186.40ms max = 188.32ms median = 187.52ms mean = 187.53ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112440), (index: 89,  score: 4.162663), (index: 984,  score: 4.077516), 
[72 iters] min = 277.68ms max = 279.49ms median = 278.98ms mean = 278.96ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485483), (index: 22,  score: 3.693227), (index: 309,  score: 3.692008), 
[46 iters] min = 441.89ms max = 444.90ms median = 443.29ms mean = 443.29ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001725), (index: 310,  score: 4.622917), 
[123 iters] min = 162.65ms max = 164.36ms median = 163.48ms mean = 163.48ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334195), (index: 720,  score: 4.178129), 
[92 iters] min = 212.45ms max = 219.58ms median = 218.83ms mean = 218.63ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233637), (index: 309,  score: 3.921281), (index: 310,  score: 3.807555), 
[65 iters] min = 309.34ms max = 311.45ms median = 310.66ms mean = 310.62ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011186), (index: 309,  score: 4.270287), (index: 310,  score: 3.913450), 
[156 iters] min = 124.74ms max = 129.06ms median = 128.49ms mean = 128.46ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367956), (index: 309,  score: 3.259869), (index: 308,  score: 3.008148), 
[110 iters] min = 181.64ms max = 183.94ms median = 183.02ms mean = 183.01ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141463), (index: 883,  score: 2.990551), (index: 308,  score: 2.454389), 
[71 iters] min = 281.63ms max = 283.30ms median = 282.29ms mean = 282.34ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396775), (index: 883,  score: 2.240934), (index: 309,  score: 2.083860), 
[66 iters] min = 301.70ms max = 305.57ms median = 304.63ms mean = 304.62ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885462), (index: 309,  score: 4.954109), (index: 310,  score: 4.638606), 
[187 iters] min = 106.73ms max = 107.82ms median = 107.25ms mean = 107.25ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799911), (index: 309,  score: 4.595183), (index: 308,  score: 3.817008), 
[98 iters] min = 199.13ms max = 205.03ms median = 204.35ms mean = 204.27ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156299), (index: 309,  score: 4.532576), (index: 308,  score: 4.049803), 
[60 iters] min = 336.78ms max = 338.58ms median = 337.58ms mean = 337.55ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612401), (index: 584,  score: 2.352643), 
[173 iters] min = 113.83ms max = 117.74ms median = 115.82ms mean = 115.63ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129788), (index: 309,  score: 2.389379), (index: 308,  score: 1.880310), 
[104 iters] min = 189.90ms max = 196.72ms median = 193.52ms mean = 192.99ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256272), (index: 557,  score: 2.220434), (index: 309,  score: 1.944911), 
[72 iters] min = 278.47ms max = 283.83ms median = 281.93ms mean = 281.60ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281981), (index: 309,  score: 1.962247), (index: 883,  score: 1.285465), 
[52 iters] min = 377.34ms max = 392.03ms median = 388.37ms mean = 388.11ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098927), (index: 308,  score: 2.259606), (index: 301,  score: 2.159039), 
[40 iters] min = 506.48ms max = 514.94ms median = 510.52ms mean = 510.54ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888678), (index: 494,  score: 2.104781), (index: 309,  score: 1.869407), 
[32 iters] min = 619.52ms max = 642.13ms median = 635.30ms mean = 634.70ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531360), (index: 883,  score: 2.248765), (index: 309,  score: 2.237852), 
[26 iters] min = 784.59ms max = 798.40ms median = 791.67ms mean = 790.78ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652478), (index: 309,  score: 6.357604), (index: 308,  score: 6.236127), 
[149 iters] min = 133.65ms max = 134.93ms median = 134.26ms mean = 134.26ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998840), (index: 89,  score: 6.411969), (index: 308,  score: 5.775461), 
[74 iters] min = 271.85ms max = 273.72ms median = 272.79ms mean = 272.75ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661426), (index: 838,  score: 4.319452), (index: 309,  score: 4.076355), 
[53 iters] min = 378.86ms max = 383.65ms median = 379.77ms mean = 379.93ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427817), (index: 308,  score: 3.451130), (index: 309,  score: 3.319760), 
[310 iters] min =  59.26ms max =  65.33ms median =  64.60ms mean =  64.58ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089767), (index: 309,  score: 3.409031), (index: 113,  score: 3.385418), 
[246 iters] min =  80.87ms max =  82.21ms median =  81.46ms mean =  81.47ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186359), (index: 644,  score: 3.177923), 
[207 iters] min =  89.67ms max =  97.49ms median =  96.71ms mean =  96.65ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341188), (index: 310,  score: 2.929487), 
[129 iters] min = 155.64ms max = 156.74ms median = 156.03ms mean = 156.06ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495994), (index: 113,  score: -4.947915), (index: 310,  score: -5.267948), 
[44 iters] min = 455.63ms max = 462.39ms median = 456.46ms mean = 456.71ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592705), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[283 iters] min =  70.57ms max =  71.25ms median =  70.85ms mean =  70.85ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378345), (index: 108,  score: 2.289131), 
[146 iters] min = 136.92ms max = 138.09ms median = 137.46ms mean = 137.49ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484588), (index: 861,  score: 2.258526), (index: 309,  score: 2.134490), 
[97 iters] min = 199.50ms max = 208.17ms median = 207.41ms mean = 207.32ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816827), (index: 883,  score: 2.518669), (index: 113,  score: 2.046142), 
[72 iters] min = 277.36ms max = 279.63ms median = 278.80ms mean = 278.82ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089393), (index: 955,  score: 2.892824), (index: 947,  score: 2.188145), 
[44 iters] min = 456.29ms max = 465.19ms median = 464.33ms mean = 464.03ms
cortex-A78 @ 1 thread @ 2.2GHz mobile w/ onednn+acl by gcc-10
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767030), (index: 644,  score: 4.848297), (index: 108,  score: 3.925721), 
[139 iters] min = 144.14ms max = 147.54ms median = 144.58ms mean = 144.66ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112427), (index: 89,  score: 4.162661), (index: 984,  score: 4.077535), 
[94 iters] min = 208.93ms max = 214.23ms median = 213.15ms mean = 213.14ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485474), (index: 22,  score: 3.693241), (index: 309,  score: 3.691998), 
[59 iters] min = 341.99ms max = 343.72ms median = 342.52ms mean = 342.65ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001735), (index: 310,  score: 4.622921), 
[140 iters] min = 142.90ms max = 144.13ms median = 143.52ms mean = 143.54ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334185), (index: 720,  score: 4.178122), 
[106 iters] min = 187.87ms max = 190.86ms median = 189.95ms mean = 189.98ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233639), (index: 309,  score: 3.921288), (index: 310,  score: 3.807554), 
[74 iters] min = 272.82ms max = 274.80ms median = 273.49ms mean = 273.61ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885463), (index: 309,  score: 4.954110), (index: 310,  score: 4.638607), 
[253 iters] min =  77.91ms max =  82.82ms median =  79.13ms mean =  79.27ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595183), (index: 308,  score: 3.817009), 
[129 iters] min = 153.78ms max = 161.20ms median = 154.93ms mean = 155.29ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156300), (index: 309,  score: 4.532576), (index: 308,  score: 4.049804), 
[77 iters] min = 259.26ms max = 269.29ms median = 260.32ms mean = 260.50ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[513 iters] min =  38.59ms max =  41.36ms median =  39.01ms mean =  39.05ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[375 iters] min =  53.03ms max =  55.67ms median =  53.43ms mean =  53.47ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[307 iters] min =  61.81ms max =  67.46ms median =  65.31ms mean =  65.36ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[188 iters] min = 105.76ms max = 108.15ms median = 106.46ms mean = 106.52ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592701), (index: 308,  score: 2.354276), (index: 310,  score: 2.337050), 
[500 iters] min =  39.25ms max =  42.54ms median =  39.87ms mean =  40.01ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554751), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[210 iters] min =  94.33ms max =  98.57ms median =  95.00ms mean =  95.28ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134489), 
[133 iters] min = 149.45ms max = 154.03ms median = 150.28ms mean = 150.73ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[98 iters] min = 204.04ms max = 212.16ms median = 205.46ms mean = 205.89ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[57 iters] min = 342.86ms max = 356.00ms median = 352.00ms mean = 352.06ms
cortex-A78 @ 1 thread @ 2.2GHz mobile w/ onednn+acl by llvm-14
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767035), (index: 644,  score: 4.848297), (index: 108,  score: 3.925725), 
[131 iters] min = 153.26ms max = 154.11ms median = 153.64ms mean = 153.65ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112425), (index: 89,  score: 4.162658), (index: 984,  score: 4.077536), 
[89 iters] min = 222.46ms max = 226.33ms median = 225.39ms mean = 225.45ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485474), (index: 22,  score: 3.693239), (index: 309,  score: 3.691997), 
[56 iters] min = 360.51ms max = 361.95ms median = 361.49ms mean = 361.49ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001735), (index: 310,  score: 4.622919), 
[135 iters] min = 148.44ms max = 149.62ms median = 149.14ms mean = 149.13ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334186), (index: 720,  score: 4.178123), 
[101 iters] min = 198.81ms max = 200.55ms median = 199.52ms mean = 199.55ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233641), (index: 309,  score: 3.921288), (index: 310,  score: 3.807556), 
[71 iters] min = 281.75ms max = 283.94ms median = 282.60ms mean = 282.63ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885462), (index: 309,  score: 4.954110), (index: 310,  score: 4.638605), 
[242 iters] min =  81.33ms max =  83.18ms median =  82.77ms mean =  82.76ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799909), (index: 309,  score: 4.595184), (index: 308,  score: 3.817008), 
[124 iters] min = 161.50ms max = 162.97ms median = 162.24ms mean = 162.27ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156298), (index: 309,  score: 4.532575), (index: 308,  score: 4.049804), 
[74 iters] min = 267.18ms max = 272.12ms median = 271.49ms mean = 271.42ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[517 iters] min =  38.52ms max =  39.87ms median =  38.74ms mean =  38.75ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[378 iters] min =  52.68ms max =  53.95ms median =  52.99ms mean =  52.99ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[311 iters] min =  61.21ms max =  65.42ms median =  64.50ms mean =  64.44ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[191 iters] min = 103.36ms max = 107.97ms median = 105.29ms mean = 105.16ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592703), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[502 iters] min =  37.30ms max =  43.18ms median =  39.85ms mean =  39.86ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[210 iters] min =  94.49ms max =  95.74ms median =  95.26ms mean =  95.24ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134490), 
[133 iters] min = 147.74ms max = 151.75ms median = 150.98ms mean = 150.95ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[97 iters] min = 205.90ms max = 208.26ms median = 207.23ms mean = 207.25ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[57 iters] min = 352.16ms max = 355.89ms median = 353.55ms mean = 353.59ms
cortex-A78 @ 1 thread @ 2.2GHz trace w/ openblas by gcc-10
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf       
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767040), (index: 644,  score: 4.848301), (index: 108,  score: 3.925720), 
[103 iters] min = 193.40ms max = 197.48ms median = 195.92ms mean = 195.92ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112434), (index: 89,  score: 4.162667), (index: 984,  score: 4.077518), 
[69 iters] min = 287.46ms max = 296.45ms median = 289.54ms mean = 289.89ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485489), (index: 22,  score: 3.693230), (index: 309,  score: 3.692008), 
[41 iters] min = 480.26ms max = 492.59ms median = 488.87ms mean = 488.35ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001730), (index: 310,  score: 4.622920), 
[186 iters] min = 106.90ms max = 109.52ms median = 107.58ms mean = 107.65ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528473), (index: 89,  score: 4.334188), (index: 720,  score: 4.178120), 
[129 iters] min = 155.07ms max = 157.26ms median = 155.81ms mean = 155.84ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233627), (index: 309,  score: 3.921280), (index: 310,  score: 3.807575), 
[88 iters] min = 225.97ms max = 234.25ms median = 229.67ms mean = 229.65ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011186), (index: 309,  score: 4.270289), (index: 310,  score: 3.913450), 
[168 iters] min = 118.16ms max = 127.59ms median = 118.97ms mean = 119.20ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367956), (index: 309,  score: 3.259869), (index: 308,  score: 3.008148), 
[122 iters] min = 163.13ms max = 173.86ms median = 165.02ms mean = 165.15ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141462), (index: 883,  score: 2.990551), (index: 308,  score: 2.454388), 
[76 iters] min = 263.27ms max = 273.44ms median = 265.93ms mean = 265.88ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396774), (index: 883,  score: 2.240934), (index: 309,  score: 2.083858), 
[70 iters] min = 285.29ms max = 288.14ms median = 286.27ms mean = 286.32ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885462), (index: 309,  score: 4.954112), (index: 310,  score: 4.638609), 
[330 iters] min =  59.02ms max =  62.28ms median =  60.71ms mean =  60.71ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595184), (index: 308,  score: 3.817011), 
[171 iters] min = 115.54ms max = 120.34ms median = 117.16ms mean = 117.22ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156297), (index: 309,  score: 4.532578), (index: 308,  score: 4.049804), 
[97 iters] min = 201.03ms max = 208.43ms median = 206.82ms mean = 206.76ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315773), (index: 309,  score: 2.612401), (index: 584,  score: 2.352643), 
[181 iters] min = 109.79ms max = 112.34ms median = 110.86ms mean = 110.88ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129786), (index: 309,  score: 2.389379), (index: 308,  score: 1.880310), 
[107 iters] min = 181.13ms max = 192.89ms median = 186.55ms mean = 187.48ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256278), (index: 557,  score: 2.220436), (index: 309,  score: 1.944911), 
[72 iters] min = 274.13ms max = 284.53ms median = 279.14ms mean = 278.66ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281981), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[53 iters] min = 379.07ms max = 389.75ms median = 384.36ms mean = 384.40ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098922), (index: 308,  score: 2.259605), (index: 301,  score: 2.159040), 
[40 iters] min = 494.87ms max = 504.51ms median = 500.04ms mean = 500.18ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888676), (index: 494,  score: 2.104782), (index: 309,  score: 1.869408), 
[32 iters] min = 624.12ms max = 634.28ms median = 630.08ms mean = 630.43ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531368), (index: 883,  score: 2.248763), (index: 309,  score: 2.237854), 
[26 iters] min = 773.25ms max = 788.49ms median = 780.03ms mean = 779.84ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652478), (index: 309,  score: 6.357600), (index: 308,  score: 6.236126), 
[195 iters] min = 102.10ms max = 103.82ms median = 102.98ms mean = 102.99ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998841), (index: 89,  score: 6.411970), (index: 308,  score: 5.775462), 
[87 iters] min = 221.17ms max = 232.35ms median = 230.93ms mean = 230.74ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661433), (index: 838,  score: 4.319452), (index: 309,  score: 4.076357), 
[62 iters] min = 323.17ms max = 325.00ms median = 324.05ms mean = 324.00ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427824), (index: 308,  score: 3.451133), (index: 309,  score: 3.319760), 
[523 iters] min =  38.01ms max =  38.85ms median =  38.26ms mean =  38.27ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409033), (index: 113,  score: 3.385417), 
[401 iters] min =  47.24ms max =  50.71ms median =  50.00ms mean =  49.93ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594853), (index: 308,  score: 3.186353), (index: 644,  score: 3.177923), 
[303 iters] min =  65.71ms max =  66.91ms median =  66.20ms mean =  66.22ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363823), (index: 108,  score: 3.341187), (index: 310,  score: 2.929486), 
[187 iters] min = 103.69ms max = 111.44ms median = 107.10ms mean = 107.32ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495989), (index: 113,  score: -4.947912), (index: 310,  score: -5.267945), 
[59 iters] min = 343.28ms max = 345.66ms median = 344.29ms mean = 344.38ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592708), (index: 308,  score: 2.354277), (index: 310,  score: 2.337050), 
[226 iters] min =  86.97ms max =  90.62ms median =  88.51ms mean =  88.54ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554757), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[105 iters] min = 189.86ms max = 194.44ms median = 191.26ms mean = 191.33ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484581), (index: 861,  score: 2.258524), (index: 309,  score: 2.134490), 
[75 iters] min = 264.78ms max = 270.31ms median = 266.96ms mean = 267.02ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816823), (index: 883,  score: 2.518671), (index: 113,  score: 2.046143), 
[60 iters] min = 334.38ms max = 342.40ms median = 337.99ms mean = 338.42ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089396), (index: 955,  score: 2.892823), (index: 947,  score: 2.188144), 
[38 iters] min = 534.78ms max = 544.43ms median = 539.04ms mean = 539.32ms
cortex-A78 @ 1 thread @ 2.2GHz trace w/ openblas by llvm-14
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf                                             
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767040), (index: 644,  score: 4.848290), (index: 108,  score: 3.925722), 
[113 iters] min = 176.81ms max = 179.70ms median = 178.45ms mean = 178.44ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112445), (index: 89,  score: 4.162668), (index: 984,  score: 4.077518), 
[77 iters] min = 260.08ms max = 263.29ms median = 261.70ms mean = 261.72ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485485), (index: 22,  score: 3.693229), (index: 309,  score: 3.692007), 
[46 iters] min = 435.45ms max = 441.38ms median = 437.41ms mean = 437.82ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001730), (index: 310,  score: 4.622921), 
[192 iters] min = 103.55ms max = 106.57ms median = 104.49ms mean = 104.67ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334196), (index: 720,  score: 4.178128), 
[134 iters] min = 148.01ms max = 151.07ms median = 150.27ms mean = 150.25ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233629), (index: 309,  score: 3.921285), (index: 310,  score: 3.807566), 
[90 iters] min = 221.63ms max = 224.13ms median = 223.00ms mean = 222.98ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011185), (index: 309,  score: 4.270289), (index: 310,  score: 3.913450), 
[176 iters] min = 110.46ms max = 115.12ms median = 113.89ms mean = 113.83ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367955), (index: 309,  score: 3.259869), (index: 308,  score: 3.008149), 
[126 iters] min = 158.16ms max = 160.79ms median = 159.86ms mean = 159.84ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141462), (index: 883,  score: 2.990552), (index: 308,  score: 2.454388), 
[79 iters] min = 254.16ms max = 256.14ms median = 254.98ms mean = 255.04ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396772), (index: 883,  score: 2.240934), (index: 309,  score: 2.083858), 
[74 iters] min = 272.59ms max = 274.69ms median = 273.85ms mean = 273.76ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885461), (index: 309,  score: 4.954110), (index: 310,  score: 4.638609), 
[335 iters] min =  59.11ms max =  61.63ms median =  59.66ms mean =  59.80ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799911), (index: 309,  score: 4.595184), (index: 308,  score: 3.817010), 
[176 iters] min = 110.72ms max = 119.15ms median = 114.14ms mean = 114.08ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156297), (index: 309,  score: 4.532577), (index: 308,  score: 4.049804), 
[101 iters] min = 199.14ms max = 200.60ms median = 199.64ms mean = 199.71ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[183 iters] min = 106.78ms max = 110.57ms median = 109.47ms mean = 109.51ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129786), (index: 309,  score: 2.389378), (index: 308,  score: 1.880310), 
[109 iters] min = 182.85ms max = 188.14ms median = 184.45ms mean = 185.17ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256277), (index: 557,  score: 2.220437), (index: 309,  score: 1.944912), 
[73 iters] min = 270.67ms max = 278.37ms median = 274.31ms mean = 274.15ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281981), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[53 iters] min = 374.41ms max = 381.08ms median = 377.27ms mean = 377.47ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098921), (index: 308,  score: 2.259605), (index: 301,  score: 2.159040), 
[41 iters] min = 492.50ms max = 500.31ms median = 495.64ms mean = 495.88ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888677), (index: 494,  score: 2.104781), (index: 309,  score: 1.869408), 
[33 iters] min = 618.49ms max = 626.80ms median = 622.91ms mean = 623.02ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531368), (index: 883,  score: 2.248762), (index: 309,  score: 2.237853), 
[27 iters] min = 762.30ms max = 770.45ms median = 766.59ms mean = 766.92ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652476), (index: 309,  score: 6.357601), (index: 308,  score: 6.236126), 
[194 iters] min = 100.03ms max = 104.00ms median = 103.54ms mean = 103.45ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998842), (index: 89,  score: 6.411971), (index: 308,  score: 5.775463), 
[87 iters] min = 230.05ms max = 231.68ms median = 230.90ms mean = 230.87ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661433), (index: 838,  score: 4.319451), (index: 309,  score: 4.076356), 
[62 iters] min = 322.91ms max = 324.86ms median = 323.92ms mean = 323.94ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427824), (index: 308,  score: 3.451133), (index: 309,  score: 3.319760), 
[527 iters] min =  37.81ms max =  38.38ms median =  37.99ms mean =  37.99ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409033), (index: 113,  score: 3.385417), 
[401 iters] min =  49.50ms max =  50.28ms median =  49.88ms mean =  49.89ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594853), (index: 308,  score: 3.186353), (index: 644,  score: 3.177923), 
[303 iters] min =  63.09ms max =  66.35ms median =  66.12ms mean =  66.04ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363823), (index: 108,  score: 3.341187), (index: 310,  score: 2.929486), 
[188 iters] min = 106.14ms max = 107.43ms median = 106.53ms mean = 106.54ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495990), (index: 113,  score: -4.947911), (index: 310,  score: -5.267944), 
[59 iters] min = 322.77ms max = 342.36ms median = 341.34ms mean = 340.91ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592709), (index: 308,  score: 2.354278), (index: 310,  score: 2.337051), 
[249 iters] min =  78.84ms max =  81.62ms median =  80.48ms mean =  80.50ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554757), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[114 iters] min = 175.42ms max = 186.83ms median = 176.44ms mean = 176.50ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484580), (index: 861,  score: 2.258524), (index: 309,  score: 2.134490), 
[81 iters] min = 247.21ms max = 249.92ms median = 248.21ms mean = 248.24ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816823), (index: 883,  score: 2.518671), (index: 113,  score: 2.046143), 
[63 iters] min = 318.70ms max = 323.30ms median = 320.32ms mean = 320.31ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089397), (index: 955,  score: 2.892823), (index: 947,  score: 2.188145), 
[40 iters] min = 501.14ms max = 513.98ms median = 511.05ms mean = 510.87ms
cortex-A78 @ 1 thread @ 2.2GHz mobile w/ openblas by gcc-10
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767035), (index: 644,  score: 4.848308), (index: 108,  score: 3.925720), 
[246 iters] min =  80.81ms max =  86.74ms median =  81.51ms mean =  81.58ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112425), (index: 89,  score: 4.162664), (index: 984,  score: 4.077536), 
[164 iters] min = 121.28ms max = 125.59ms median = 121.93ms mean = 122.00ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485470), (index: 22,  score: 3.693244), (index: 309,  score: 3.692000), 
[99 iters] min = 202.89ms max = 205.36ms median = 203.56ms mean = 203.62ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001737), (index: 310,  score: 4.622924), 
[225 iters] min =  86.40ms max =  90.57ms median =  88.91ms mean =  88.91ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334188), (index: 720,  score: 4.178122), 
[164 iters] min = 121.46ms max = 123.66ms median = 122.01ms mean = 122.04ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233635), (index: 309,  score: 3.921287), (index: 310,  score: 3.807558), 
[109 iters] min = 182.30ms max = 187.76ms median = 183.48ms mean = 183.90ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885465), (index: 309,  score: 4.954110), (index: 310,  score: 4.638604), 
[422 iters] min =  46.97ms max =  49.69ms median =  47.40ms mean =  47.40ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799911), (index: 309,  score: 4.595185), (index: 308,  score: 3.817010), 
[222 iters] min =  89.72ms max =  91.05ms median =  90.24ms mean =  90.25ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156294), (index: 309,  score: 4.532573), (index: 308,  score: 4.049802), 
[125 iters] min = 157.43ms max = 161.50ms median = 160.45ms mean = 160.42ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[643 iters] min =  30.86ms max =  31.60ms median =  31.10ms mean =  31.11ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[476 iters] min =  39.86ms max =  42.66ms median =  42.10ms mean =  42.08ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[352 iters] min =  56.52ms max =  57.61ms median =  56.88ms mean =  56.89ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[212 iters] min =  93.98ms max =  95.46ms median =  94.62ms mean =  94.66ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592701), (index: 308,  score: 2.354276), (index: 310,  score: 2.337050), 
[524 iters] min =  37.85ms max =  38.77ms median =  38.20ms mean =  38.22ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554751), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[212 iters] min =  92.22ms max =  95.43ms median =  94.42ms mean =  94.48ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134489), 
[135 iters] min = 148.14ms max = 149.99ms median = 148.86ms mean = 148.91ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[98 iters] min = 201.64ms max = 205.55ms median = 204.62ms mean = 204.56ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[58 iters] min = 347.59ms max = 352.72ms median = 349.53ms mean = 349.64ms
cortex-A78 @ 1 thread @ 2.2GHz mobile w/ openblas by llvm-14
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf                                                                                                     
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767038), (index: 644,  score: 4.848302), (index: 108,  score: 3.925722), 
[242 iters] min =  80.70ms max =  83.36ms median =  82.98ms mean =  82.94ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112428), (index: 89,  score: 4.162664), (index: 984,  score: 4.077536), 
[163 iters] min = 121.95ms max = 123.61ms median = 123.10ms mean = 122.86ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485475), (index: 22,  score: 3.693243), (index: 309,  score: 3.691999), 
[98 iters] min = 204.75ms max = 207.10ms median = 205.82ms mean = 205.79ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001738), (index: 310,  score: 4.622924), 
[223 iters] min =  87.24ms max =  90.33ms median =  89.91ms mean =  89.87ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334188), (index: 720,  score: 4.178121), 
[163 iters] min = 122.60ms max = 123.69ms median = 123.15ms mean = 123.10ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233637), (index: 309,  score: 3.921288), (index: 310,  score: 3.807558), 
[109 iters] min = 180.96ms max = 185.32ms median = 183.94ms mean = 183.86ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885464), (index: 309,  score: 4.954108), (index: 310,  score: 4.638605), 
[425 iters] min =  46.86ms max =  64.11ms median =  47.11ms mean =  47.15ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595186), (index: 308,  score: 3.817011), 
[221 iters] min =  90.07ms max =  96.27ms median =  90.74ms mean =  90.78ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156299), (index: 309,  score: 4.532575), (index: 308,  score: 4.049802), 
[125 iters] min = 159.56ms max = 160.93ms median = 160.51ms mean = 160.51ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[659 iters] min =  30.14ms max =  30.74ms median =  30.36ms mean =  30.36ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[486 iters] min =  39.21ms max =  41.70ms median =  41.22ms mean =  41.19ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[358 iters] min =  55.51ms max =  56.35ms median =  55.91ms mean =  55.91ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[214 iters] min =  88.65ms max =  94.15ms median =  93.59ms mean =  93.48ms
Creating pytorch module: resnet50
(index: 227,  score: 26.693110), (index: 334,  score: 20.228640), (index: 278,  score: 17.633595), 
[63 iters] min = 319.68ms max = 321.48ms median = 320.10ms mean = 320.12ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592703), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[527 iters] min =  37.41ms max =  38.43ms median =  37.99ms mean =  37.98ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[216 iters] min =  90.73ms max =  93.29ms median =  92.95ms mean =  92.91ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134490), 
[137 iters] min = 146.35ms max = 147.87ms median = 146.84ms mean = 146.94ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[99 iters] min = 199.65ms max = 204.26ms median = 202.37ms mean = 202.39ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[57 iters] min = 349.01ms max = 352.13ms median = 351.07ms mean = 350.95ms

version: 2.0.1 by pip install w/ onednn+acl

cortex-A78 @ 1 thread @ 2.2GHz trace w/ python
$ python python/pytorch_perf.py --use-trace
nb processors 12
model name      : ARMv8 Processor rev 1 (v8l)
Using 1 cpu thread
Creating model: efficientformerv2_s0
[(985, 11.767034530639648), (644, 4.848289966583252), (108, 3.925722122192383)]
min =  166.02ms  max =  167.90ms  mean =  166.86ms, median =  166.83ms
Creating model: efficientformerv2_s1
[(985, 13.112439155578613), (89, 4.162661552429199), (984, 4.077512264251709)]
min =  245.23ms  max =  249.38ms  mean =  247.71ms, median =  247.67ms
Creating model: efficientformerv2_s2
[(985, 12.485483169555664), (22, 3.6932296752929688), (309, 3.692007303237915)]
min =  394.45ms  max =  397.61ms  mean =  396.03ms, median =  396.00ms
Creating model: SwiftFormer_XS
[(985, 11.914167404174805), (883, 5.0017242431640625), (310, 4.622915744781494)]
min =  149.97ms  max =  153.15ms  mean =  151.86ms, median =  151.85ms
Creating model: SwiftFormer_S
[(985, 12.528473854064941), (89, 4.3341875076293945), (720, 4.178118705749512)]
min =  203.74ms  max =  205.36ms  mean =  204.36ms, median =  204.31ms
Creating model: SwiftFormer_L1
[(985, 13.233625411987305), (309, 3.9212796688079834), (310, 3.807574510574341)]
min =  291.11ms  max =  296.47ms  mean =  292.02ms, median =  291.78ms
Creating model: EMO_1M
[(985, 10.011184692382812), (309, 4.270286560058594), (310, 3.913449287414551)]
min =  116.32ms  max =  122.68ms  mean =  117.33ms, median =  116.98ms
Creating model: EMO_2M
[(985, 9.367955207824707), (309, 3.2598681449890137), (308, 3.0081465244293213)]
min =  163.07ms  max =  173.73ms  mean =  164.14ms, median =  163.75ms
Creating model: EMO_5M
[(985, 9.141463279724121), (883, 2.990551471710205), (308, 2.4543871879577637)]
min =  252.52ms  max =  260.39ms  mean =  258.85ms, median =  259.00ms
Creating model: EMO_6M
[(985, 9.396775245666504), (883, 2.240933895111084), (309, 2.083859443664551)]
min =  274.68ms  max =  276.56ms  mean =  275.44ms, median =  275.37ms
Creating model: edgenext_xx_small
[(985, 10.885461807250977), (309, 4.954111099243164), (310, 4.638607978820801)]
min =   91.56ms  max =   98.06ms  mean =   93.97ms, median =   93.70ms
Creating model: edgenext_x_small
[(985, 9.799908638000488), (309, 4.595181465148926), (308, 3.8170080184936523)]
min =  179.30ms  max =  184.00ms  mean =  180.66ms, median =  180.22ms
Creating model: edgenext_small
[(985, 12.156298637390137), (309, 4.532576560974121), (308, 4.049804210662842)]
min =  298.61ms  max =  303.57ms  mean =  299.78ms, median =  299.68ms
Creating model: mobilevitv2_050
[(985, 8.349032402038574), (309, 2.584130048751831), (584, 2.319410800933838)]
min =  115.52ms  max =  117.59ms  mean =  116.44ms, median =  116.40ms
Creating model: mobilevitv2_075
[(985, 8.16434383392334), (309, 2.3874454498291016), (308, 1.8584961891174316)]
min =  192.97ms  max =  195.01ms  mean =  194.14ms, median =  194.13ms
Creating model: mobilevitv2_100
[(985, 8.236356735229492), (557, 2.2240982055664062), (309, 1.8535703420639038)]
min =  280.24ms  max =  286.70ms  mean =  285.54ms, median =  285.51ms
Creating model: mobilevitv2_125
[(985, 8.272746086120605), (309, 2.0136659145355225), (883, 1.3231419324874878)]
min =  389.17ms  max =  392.26ms  mean =  390.54ms, median =  390.51ms
Creating model: mobilevitv2_150
[(985, 9.097070693969727), (308, 2.224851608276367), (301, 2.1440443992614746)]
min =  498.76ms  max =  511.29ms  mean =  509.42ms, median =  509.82ms
Creating model: mobilevitv2_175
[(985, 8.880781173706055), (494, 2.0807058811187744), (968, 1.8858556747436523)]
min =  657.37ms  max =  676.08ms  mean =  666.47ms, median =  666.27ms
Creating model: mobilevitv2_200
[(985, 8.548127174377441), (309, 2.226964235305786), (883, 2.2137231826782227)]
min =  807.79ms  max =  815.96ms  mean =  813.77ms, median =  814.32ms
Creating model: mobilevit_xx_small
[(985, 12.629860877990723), (309, 6.416606426239014), (308, 6.263427734375)]
min =  120.40ms  max =  122.26ms  mean =  121.19ms, median =  121.14ms
Creating model: mobilevit_x_small
[(985, 13.033150672912598), (89, 6.419534683227539), (308, 5.793033599853516)]
min =  263.66ms  max =  267.87ms  mean =  265.09ms, median =  264.66ms
Creating model: mobilevit_small
[(985, 10.672835350036621), (838, 4.352145671844482), (309, 4.135124206542969)]
min =  364.37ms  max =  369.40ms  mean =  366.32ms, median =  365.74ms
Creating model: LeViT_128S
[(985, 11.427818298339844), (308, 3.451131820678711), (309, 3.319760322570801)]
min =   42.68ms  max =   45.90ms  mean =   43.08ms, median =   42.99ms
Creating model: LeViT_128
[(985, 11.089767456054688), (309, 3.4090335369110107), (113, 3.385415554046631)]
min =   52.56ms  max =   56.68ms  mean =   55.93ms, median =   55.97ms
Creating model: LeViT_192
[(985, 11.594854354858398), (308, 3.1863551139831543), (644, 3.1779229640960693)]
min =   72.21ms  max =   73.51ms  mean =   72.81ms, median =   72.79ms
Creating model: LeViT_256
[(985, 11.363821983337402), (108, 3.3411974906921387), (310, 2.929494619369507)]
min =  109.99ms  max =  117.34ms  mean =  116.19ms, median =  116.23ms
Creating model: resnet50
[(985, 7.4433512687683105), (113, -5.0514445304870605), (310, -5.506593227386475)]
min =  472.29ms  max =  484.23ms  mean =  474.29ms, median =  473.57ms
Creating model: mobilenetv3_large_100
[(985, 9.592708587646484), (308, 2.354276180267334), (310, 2.337049722671509)]
min =   61.33ms  max =   74.30ms  mean =   61.95ms, median =   61.69ms
Creating model: tf_efficientnetv2_b0
[(985, 9.554756164550781), (309, 2.3783445358276367), (108, 2.289132595062256)]
min =  138.34ms  max =  140.11ms  mean =  139.03ms, median =  138.98ms
Creating model: tf_efficientnetv2_b1
[(985, 9.484580039978027), (861, 2.2585256099700928), (309, 2.1344892978668213)]
min =  211.04ms  max =  214.46ms  mean =  212.59ms, median =  212.51ms
Creating model: tf_efficientnetv2_b2
[(985, 9.816822052001953), (883, 2.5186715126037598), (113, 2.046143054962158)]
min =  284.76ms  max =  291.15ms  mean =  287.62ms, median =  287.07ms
Creating model: tf_efficientnetv2_b3
[(985, 9.089397430419922), (955, 2.892822265625), (947, 2.1881449222564697)]
min =  473.44ms  max =  479.38ms  mean =  476.42ms, median =  476.54ms
cortex-A78 @ 1 thread @ 2.2GHz mobile w/ python
$ python python/pytorch_perf.py --use-mobile
nb processors 12
model name      : ARMv8 Processor rev 1 (v8l)
Using 1 cpu thread
Creating model: efficientformerv2_s0
[(985, 11.767034530639648), (644, 4.8482985496521), (108, 3.925720691680908)]
min =  139.63ms  max =  144.78ms  mean =  141.39ms, median =  141.07ms
Creating model: efficientformerv2_s1
[(985, 13.112424850463867), (89, 4.162662506103516), (984, 4.077541828155518)]
min =  208.07ms  max =  214.96ms  mean =  209.95ms, median =  209.47ms
Creating model: efficientformerv2_s2
[(985, 12.485469818115234), (22, 3.6932387351989746), (309, 3.6919991970062256)]
min =  332.43ms  max =  337.24ms  mean =  333.87ms, median =  333.32ms
Creating model: SwiftFormer_XS
[(985, 11.914167404174805), (883, 5.001735210418701), (310, 4.622920036315918)]
min =  141.26ms  max =  148.91ms  mean =  143.21ms, median =  142.86ms
Creating model: SwiftFormer_S
[(985, 12.52847671508789), (89, 4.334184646606445), (720, 4.178120136260986)]
min =  188.78ms  max =  190.36ms  mean =  189.37ms, median =  189.34ms
Creating model: SwiftFormer_L1
[(985, 13.233636856079102), (309, 3.921288251876831), (310, 3.8075551986694336)]
min =  270.77ms  max =  276.59ms  mean =  272.08ms, median =  271.51ms
Creating model: EMO_1M
EMO_1M model doesn't exist!!!
Creating model: EMO_2M
EMO_2M model doesn't exist!!!
Creating model: EMO_5M
EMO_5M model doesn't exist!!!
Creating model: EMO_6M
EMO_6M model doesn't exist!!!
Creating model: edgenext_xx_small
[(985, 10.885459899902344), (309, 4.954109191894531), (310, 4.63860559463501)]
min =   78.27ms  max =   82.68ms  mean =   78.91ms, median =   78.64ms
Creating model: edgenext_x_small
[(985, 9.799910545349121), (309, 4.595183372497559), (308, 3.817009449005127)]
min =  152.27ms  max =  155.67ms  mean =  154.24ms, median =  154.18ms
Creating model: edgenext_small
[(985, 12.156299591064453), (309, 4.532577037811279), (308, 4.0498046875)]
min =  258.18ms  max =  260.88ms  mean =  259.02ms, median =  258.92ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating model: LeViT_128S
[(985, 11.427816390991211), (308, 3.451131582260132), (309, 3.319758176803589)]
min =   33.06ms  max =   36.39ms  mean =   33.36ms, median =   33.32ms
Creating model: LeViT_128
[(985, 11.089767456054688), (309, 3.40903377532959), (113, 3.3854129314422607)]
min =   44.99ms  max =   53.04ms  mean =   45.32ms, median =   45.27ms
Creating model: LeViT_192
[(985, 11.594850540161133), (308, 3.1863536834716797), (644, 3.177922248840332)]
min =   59.14ms  max =   60.33ms  mean =   59.62ms, median =   59.60ms
Creating model: LeViT_256
[(985, 11.363815307617188), (108, 3.341197967529297), (310, 2.929499387741089)]
min =   92.87ms  max =   98.64ms  mean =   97.72ms, median =   97.73ms
resnet50 model doesn't exist!!!
Creating model: mobilenetv3_large_100
[(985, 9.59270191192627), (308, 2.354276418685913), (310, 2.3370494842529297)]
min =   39.37ms  max =   41.29ms  mean =   39.85ms, median =   39.80ms
Creating model: tf_efficientnetv2_b0
[(985, 9.554752349853516), (309, 2.3783442974090576), (108, 2.289130449295044)]
min =  101.98ms  max =  107.25ms  mean =  104.74ms, median =  104.66ms
Creating model: tf_efficientnetv2_b1
[(985, 9.48458480834961), (861, 2.25852632522583), (309, 2.1344892978668213)]
min =  162.56ms  max =  170.07ms  mean =  164.28ms, median =  163.77ms
Creating model: tf_efficientnetv2_b2
[(985, 9.816827774047852), (883, 2.518669605255127), (113, 2.0461411476135254)]
min =  221.56ms  max =  228.30ms  mean =  223.40ms, median =  222.92ms
Creating model: tf_efficientnetv2_b3
[(985, 9.08939266204834), (955, 2.8928256034851074), (947, 2.188145399093628)]
min =  375.23ms  max =  379.12ms  mean =  377.04ms, median =  377.10ms
cortex-A78 @ 1 thread @ 2.2GHz trace
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767033), (index: 644,  score: 4.848289), (index: 108,  score: 3.925720), 
[121 iters] min = 165.37ms max = 167.15ms median = 165.61ms mean = 165.72ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112442), (index: 89,  score: 4.162664), (index: 984,  score: 4.077511), 
[81 iters] min = 247.34ms max = 249.54ms median = 247.98ms mean = 248.06ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485486), (index: 22,  score: 3.693231), (index: 309,  score: 3.692009), 
[51 iters] min = 396.71ms max = 398.54ms median = 397.64ms mean = 397.59ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001728), (index: 310,  score: 4.622917), 
[132 iters] min = 150.56ms max = 160.16ms median = 151.26ms mean = 151.52ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528474), (index: 89,  score: 4.334189), (index: 720,  score: 4.178121), 
[99 iters] min = 200.23ms max = 205.77ms median = 203.55ms mean = 203.62ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233625), (index: 309,  score: 3.921280), (index: 310,  score: 3.807572), 
[69 iters] min = 288.56ms max = 293.66ms median = 290.31ms mean = 290.59ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011185), (index: 309,  score: 4.270287), (index: 310,  score: 3.913450), 
[173 iters] min = 112.83ms max = 126.63ms median = 115.99ms mean = 116.12ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367957), (index: 309,  score: 3.259868), (index: 308,  score: 3.008149), 
[125 iters] min = 160.38ms max = 164.09ms median = 160.81ms mean = 161.19ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141463), (index: 883,  score: 2.990551), (index: 308,  score: 2.454388), 
[79 iters] min = 254.82ms max = 267.10ms median = 255.47ms mean = 256.05ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396775), (index: 883,  score: 2.240934), (index: 309,  score: 2.083860), 
[74 iters] min = 270.30ms max = 272.76ms median = 271.56ms mean = 271.58ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885459), (index: 309,  score: 4.954109), (index: 310,  score: 4.638605), 
[218 iters] min =  91.59ms max =  93.52ms median =  91.92ms mean =  91.96ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799909), (index: 309,  score: 4.595184), (index: 308,  score: 3.817008), 
[114 iters] min = 174.25ms max = 177.54ms median = 176.33ms mean = 176.38ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156297), (index: 309,  score: 4.532575), (index: 308,  score: 4.049803), 
[68 iters] min = 296.56ms max = 298.85ms median = 297.46ms mean = 297.48ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[172 iters] min = 112.86ms max = 117.57ms median = 116.74ms mean = 116.72ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129784), (index: 309,  score: 2.389378), (index: 308,  score: 1.880310), 
[102 iters] min = 193.56ms max = 202.30ms median = 198.39ms mean = 197.31ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256277), (index: 557,  score: 2.220435), (index: 309,  score: 1.944912), 
[70 iters] min = 285.51ms max = 294.48ms median = 286.27ms mean = 287.78ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281982), (index: 309,  score: 1.962244), (index: 883,  score: 1.285465), 
[51 iters] min = 391.75ms max = 402.74ms median = 399.40ms mean = 399.33ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098922), (index: 308,  score: 2.259605), (index: 301,  score: 2.159039), 
[39 iters] min = 513.04ms max = 524.21ms median = 519.64ms mean = 519.52ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888678), (index: 494,  score: 2.104781), (index: 309,  score: 1.869409), 
[31 iters] min = 643.05ms max = 656.05ms median = 652.33ms mean = 651.91ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531369), (index: 883,  score: 2.248763), (index: 309,  score: 2.237854), 
[25 iters] min = 799.28ms max = 806.07ms median = 802.87ms mean = 802.74ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652477), (index: 309,  score: 6.357602), (index: 308,  score: 6.236127), 
[167 iters] min = 117.28ms max = 120.77ms median = 119.76ms mean = 119.82ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998840), (index: 89,  score: 6.411970), (index: 308,  score: 5.775462), 
[77 iters] min = 260.51ms max = 262.95ms median = 261.21ms mean = 261.27ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661434), (index: 838,  score: 4.319452), (index: 309,  score: 4.076357), 
[55 iters] min = 363.30ms max = 365.36ms median = 364.04ms mean = 364.09ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427818), (index: 308,  score: 3.451128), (index: 309,  score: 3.319760), 
[477 iters] min =  38.99ms max =  45.49ms median =  41.84ms mean =  41.94ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409032), (index: 113,  score: 3.385416), 
[368 iters] min =  54.26ms max =  54.90ms median =  54.46ms mean =  54.48ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186357), (index: 644,  score: 3.177924), 
[280 iters] min =  67.60ms max =  72.25ms median =  71.64ms mean =  71.57ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363825), (index: 108,  score: 3.341189), (index: 310,  score: 2.929488), 
[175 iters] min = 114.56ms max = 115.63ms median = 114.85ms mean = 114.91ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495994), (index: 113,  score: -4.947914), (index: 310,  score: -5.267949), 
[42 iters] min = 474.12ms max = 502.11ms median = 484.36ms mean = 485.96ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592712), (index: 308,  score: 2.354277), (index: 310,  score: 2.337051), 
[322 iters] min =  61.88ms max =  64.80ms median =  62.19ms mean =  62.28ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554757), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[144 iters] min = 138.37ms max = 142.09ms median = 138.90ms mean = 139.25ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484579), (index: 861,  score: 2.258524), (index: 309,  score: 2.134490), 
[95 iters] min = 207.48ms max = 223.66ms median = 212.30ms mean = 212.54ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816822), (index: 883,  score: 2.518670), (index: 113,  score: 2.046143), 
[71 iters] min = 283.27ms max = 290.88ms median = 285.11ms mean = 285.18ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089396), (index: 955,  score: 2.892823), (index: 947,  score: 2.188146), 
[43 iters] min = 448.62ms max = 473.90ms median = 472.82ms mean = 471.88ms
cortex-A78 @ 1 thread @ 2.2GHz mobile
$ BACK=c MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767030), (index: 644,  score: 4.848297), (index: 108,  score: 3.925721), 
[144 iters] min = 136.59ms max = 143.64ms median = 139.23ms mean = 139.38ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112427), (index: 89,  score: 4.162661), (index: 984,  score: 4.077535), 
[98 iters] min = 205.03ms max = 209.48ms median = 205.74ms mean = 206.07ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485474), (index: 22,  score: 3.693241), (index: 309,  score: 3.691998), 
[61 iters] min = 330.26ms max = 332.20ms median = 330.83ms mean = 330.99ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001735), (index: 310,  score: 4.622921), 
[143 iters] min = 139.71ms max = 146.37ms median = 140.21ms mean = 140.56ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334185), (index: 720,  score: 4.178122), 
[107 iters] min = 186.75ms max = 193.17ms median = 187.02ms mean = 187.57ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233639), (index: 309,  score: 3.921288), (index: 310,  score: 3.807554), 
[75 iters] min = 266.26ms max = 271.24ms median = 268.94ms mean = 268.98ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885463), (index: 309,  score: 4.954110), (index: 310,  score: 4.638607), 
[261 iters] min =  76.37ms max =  77.60ms median =  76.70ms mean =  76.74ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595183), (index: 308,  score: 3.817009), 
[132 iters] min = 149.59ms max = 152.76ms median = 151.90ms mean = 151.90ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156300), (index: 309,  score: 4.532576), (index: 308,  score: 4.049804), 
[79 iters] min = 255.37ms max = 258.33ms median = 255.93ms mean = 256.12ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[634 iters] min =  31.30ms max =  34.89ms median =  31.50ms mean =  31.59ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[462 iters] min =  42.89ms max =  52.76ms median =  43.19ms mean =  43.32ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[347 iters] min =  57.29ms max =  62.44ms median =  57.63ms mean =  57.73ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[210 iters] min =  90.09ms max =  98.32ms median =  95.11ms mean =  95.25ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592701), (index: 308,  score: 2.354276), (index: 310,  score: 2.337050), 
[542 iters] min =  34.99ms max =  46.17ms median =  36.92ms mean =  36.96ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554751), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[198 iters] min = 101.07ms max = 101.89ms median = 101.33ms mean = 101.34ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134489), 
[125 iters] min = 158.93ms max = 161.54ms median = 160.29ms mean = 160.30ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[92 iters] min = 215.94ms max = 219.25ms median = 218.15ms mean = 218.19ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[54 iters] min = 369.63ms max = 372.97ms median = 371.07ms mean = 371.07ms
⚠️ **GitHub.com Fallback** ⚠️