dev board: M1 Asahi Linux - YingkunZhou/EdgeTransformerBench GitHub Wiki

we default use llvm-16 to build dnn lib

ncnn

M1 firestorm @ 1 thread @ 3.0GHz fp32
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
opt status: 111011101 ==> 000000001
(index: 985,  score: 11.782274), (index: 644,  score: 4.856472), (index: 108,  score: 3.921541), 
[450 iters] min =  44.46ms max =  44.57ms median =  44.51ms mean =  44.51ms
Creating ncnn net: efficientformerv2_s1
opt status: 111011101 ==> 000000001
(index: 985,  score: 13.111187), (index: 89,  score: 4.181216), (index: 984,  score: 4.101791), 
[301 iters] min =  66.49ms max =  66.60ms median =  66.54ms mean =  66.54ms
Creating ncnn net: efficientformerv2_s2
opt status: 111011101 ==> 000000001
(index: 985,  score: 12.502236), (index: 309,  score: 3.697202), (index: 22,  score: 3.686200), 
[188 iters] min = 106.79ms max = 106.96ms median = 106.87ms mean = 106.87ms
Creating ncnn net: mobilevitv2_050
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.305047), (index: 309,  score: 2.612882), (index: 584,  score: 2.330211), 
[1238 iters] min =  16.14ms max =  16.19ms median =  16.16ms mean =  16.16ms
Creating ncnn net: mobilevitv2_075
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.126369), (index: 309,  score: 2.389992), (index: 308,  score: 1.885909), 
[637 iters] min =  31.38ms max =  31.50ms median =  31.43ms mean =  31.43ms
Creating ncnn net: mobilevitv2_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.254770), (index: 557,  score: 2.225806), (index: 309,  score: 1.942585), 
[389 iters] min =  51.39ms max =  51.57ms median =  51.48ms mean =  51.48ms
Creating ncnn net: mobilevitv2_125
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.281292), (index: 309,  score: 1.960417), (index: 883,  score: 1.290664), 
[261 iters] min =  76.74ms max =  76.94ms median =  76.82ms mean =  76.83ms
Creating ncnn net: mobilevitv2_150
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.099491), (index: 308,  score: 2.251916), (index: 301,  score: 2.153155), 
[188 iters] min = 106.32ms max = 106.92ms median = 106.40ms mean = 106.45ms
Creating ncnn net: mobilevitv2_175
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.900545), (index: 494,  score: 2.110986), (index: 309,  score: 1.876236), 
[141 iters] min = 142.03ms max = 142.24ms median = 142.09ms mean = 142.11ms
Creating ncnn net: mobilevitv2_200
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.531105), (index: 883,  score: 2.244246), (index: 309,  score: 2.230253), 
[112 iters] min = 179.89ms max = 180.11ms median = 179.95ms mean = 179.96ms
Creating ncnn net: mobilevit_xx_small
opt status: 111011101 ==> 000000001
(index: 378,  score: 6.810028), (index: 382,  score: 6.278749), (index: 19,  score: 6.213943), 
[2790 iters] min =   7.14ms max =   7.21ms median =   7.17ms mean =   7.17ms
Creating ncnn net: resnet50
opt status: 111011101 ==> 000000001
(index: 985,  score: 7.484058), (index: 113,  score: -4.938162), (index: 310,  score: -5.258441), 
[236 iters] min =  84.75ms max =  84.87ms median =  84.80ms mean =  84.80ms
Creating ncnn net: mobilenetv3_large_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.600927), (index: 308,  score: 2.362727), (index: 310,  score: 2.348943), 
[2899 iters] min =   6.87ms max =   7.03ms median =   6.90ms mean =   6.90ms
Creating ncnn net: tf_efficientnetv2_b0
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.552636), (index: 309,  score: 2.377687), (index: 108,  score: 2.288832), 
[1146 iters] min =  17.37ms max =  17.54ms median =  17.48ms mean =  17.47ms
Creating ncnn net: tf_efficientnetv2_b1
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.484985), (index: 861,  score: 2.249804), (index: 309,  score: 2.138905), 
[775 iters] min =  25.74ms max =  25.94ms median =  25.83ms mean =  25.83ms
Creating ncnn net: tf_efficientnetv2_b2
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.816031), (index: 883,  score: 2.518352), (index: 113,  score: 2.038452), 
[542 iters] min =  36.86ms max =  36.95ms median =  36.90ms mean =  36.90ms
Creating ncnn net: tf_efficientnetv2_b3
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.093819), (index: 955,  score: 2.889793), (index: 947,  score: 2.188509), 
[314 iters] min =  63.75ms max =  64.02ms median =  63.87ms mean =  63.87ms
M1 firestorm @ 1 thread @ 3.0GHz fp16 (default)
$ MODEL=ALL make run-ncnn-perf
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.859375), (index: 644,  score: 4.875000), (index: 108,  score: 4.003906), 
[390 iters] min =  51.28ms max =  51.48ms median =  51.33ms mean =  51.33ms
Creating ncnn net: efficientformerv2_s1
(index: 985,  score: 12.976562), (index: 308,  score: 4.152344), (index: 984,  score: 4.132812), 
[260 iters] min =  76.93ms max =  77.05ms median =  76.98ms mean =  76.98ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.453125), (index: 22,  score: 3.632812), (index: 309,  score: 3.628906), 
[166 iters] min = 120.80ms max = 120.99ms median = 120.91ms mean = 120.91ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 8.296875), (index: 309,  score: 2.617188), (index: 584,  score: 2.343750), 
[1695 iters] min =  11.79ms max =  11.85ms median =  11.80ms mean =  11.80ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 8.117188), (index: 309,  score: 2.384766), (index: 308,  score: 1.889648), 
[878 iters] min =  22.76ms max =  22.81ms median =  22.78ms mean =  22.78ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 8.242188), (index: 557,  score: 2.226562), (index: 309,  score: 1.937500), 
[537 iters] min =  37.18ms max =  37.30ms median =  37.25ms mean =  37.25ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 8.281250), (index: 309,  score: 1.969727), (index: 883,  score: 1.276367), 
[365 iters] min =  54.74ms max =  54.88ms median =  54.81ms mean =  54.81ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.070312), (index: 308,  score: 2.230469), (index: 301,  score: 2.130859), 
[264 iters] min =  75.84ms max =  75.93ms median =  75.89ms mean =  75.89ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 8.882812), (index: 494,  score: 2.103516), (index: 309,  score: 1.873047), 
[200 iters] min = 100.17ms max = 100.28ms median = 100.23ms mean = 100.23ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 8.500000), (index: 883,  score: 2.234375), (index: 309,  score: 2.230469), 
[155 iters] min = 129.04ms max = 129.26ms median = 129.14ms mean = 129.13ms
Creating ncnn net: mobilevit_xx_small
(index: 999,  score: -nan), (index: 998,  score: -nan), (index: 997,  score: -nan), 
[4044 iters] min =   4.94ms max =   4.96ms median =   4.95ms mean =   4.95ms
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating ncnn net: resnet50
(index: 985,  score: 7.359375), (index: 113,  score: -4.937500), (index: 310,  score: -5.242188), 
[323 iters] min =  61.94ms max =  62.03ms median =  61.99ms mean =  61.99ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 9.640625), (index: 308,  score: 2.371094), (index: 310,  score: 2.343750), 
[3335 iters] min =   5.98ms max =   6.05ms median =   6.00ms mean =   6.00ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 9.562500), (index: 309,  score: 2.359375), (index: 108,  score: 2.283203), 
[1316 iters] min =  15.17ms max =  15.23ms median =  15.20ms mean =  15.20ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 9.484375), (index: 861,  score: 2.244141), (index: 309,  score: 2.140625), 
[917 iters] min =  21.78ms max =  21.85ms median =  21.81ms mean =  21.81ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 9.828125), (index: 883,  score: 2.531250), (index: 113,  score: 2.039062), 
[634 iters] min =  31.55ms max =  31.63ms median =  31.59ms mean =  31.59ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.109375), (index: 955,  score: 2.888672), (index: 947,  score: 2.191406), 
[362 iters] min =  55.33ms max =  55.46ms median =  55.40ms mean =  55.40ms
M1 firestorm @ 1 thread @ 3.0GHz int8 w/kl-mod
INFO: Using CPU backend
INFO: Using num_threads == 1
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.296875), (index: 108,  score: 6.078125), (index: 644,  score: 5.914062), 
[437 iters] min =  45.82ms max =  46.70ms median =  45.86ms mean =  45.87ms
Creating ncnn net: efficientformerv2_s1
(index: 898,  score: 8.937500), (index: 563,  score: 6.921875), (index: 27,  score: 6.207031), 
[296 iters] min =  67.58ms max =  67.70ms median =  67.64ms mean =  67.64ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.578125), (index: 883,  score: 4.468750), (index: 309,  score: 4.156250), 
[193 iters] min = 103.97ms max = 104.15ms median = 104.05ms mean = 104.05ms
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 10.930462), (index: 506,  score: 6.182128), (index: 584,  score: 5.944051), 
[1799 iters] min =  11.09ms max =  11.20ms median =  11.12ms mean =  11.12ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 10.644029), (index: 584,  score: 3.415187), (index: 309,  score: 3.292385), 
[1094 iters] min =  18.25ms max =  18.33ms median =  18.29ms mean =  18.29ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 12.304844), (index: 309,  score: 4.603567), (index: 584,  score: 3.558692), 
[750 iters] min =  26.65ms max =  26.70ms median =  26.67ms mean =  26.67ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 16.227858), (index: 309,  score: 5.082381), (index: 738,  score: 3.812296), 
[553 iters] min =  36.18ms max =  36.25ms median =  36.20ms mean =  36.20ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.671791), (index: 309,  score: 3.081745), (index: 308,  score: 2.859699), 
[428 iters] min =  46.80ms max =  46.88ms median =  46.83ms mean =  46.83ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 9.482336), (index: 681,  score: 2.202604), (index: 309,  score: 2.173967), 
[341 iters] min =  58.64ms max =  58.74ms median =  58.69ms mean =  58.69ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 11.824309), (index: 883,  score: 4.446024), (index: 309,  score: 4.375680), 
[279 iters] min =  71.65ms max =  71.77ms median =  71.70ms mean =  71.70ms
Creating ncnn net: mobilevit_xx_small
(index: 999,  score: nan), (index: 998,  score: nan), (index: 997,  score: nan), 
[3791 iters] min =   5.27ms max =   5.30ms median =   5.28ms mean =   5.28ms
Creating ncnn net: resnet50
(index: 985,  score: 6.716446), (index: 113,  score: -4.833062), (index: 310,  score: -5.049811), 
[647 iters] min =  30.86ms max =  31.01ms median =  30.92ms mean =  30.92ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 10.202103), (index: 883,  score: 2.712523), (index: 533,  score: 2.558361), 
[3412 iters] min =   5.85ms max =   5.93ms median =   5.86ms mean =   5.86ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 13.037141), (index: 108,  score: 3.455601), (index: 309,  score: 3.431606), 
[1655 iters] min =  12.08ms max =  12.15ms median =  12.09ms mean =  12.09ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 12.271066), (index: 309,  score: 3.071457), (index: 995,  score: 2.809345), 
[1088 iters] min =  18.36ms max =  18.46ms median =  18.39ms mean =  18.39ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 11.739453), (index: 309,  score: 3.525121), (index: 883,  score: 3.265590), 
[788 iters] min =  25.38ms max =  25.50ms median =  25.40ms mean =  25.40ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.467087), (index: 947,  score: 2.215796), (index: 955,  score: 2.111230), 
[466 iters] min =  42.93ms max =  43.09ms median =  42.96ms mean =  42.96ms
M1 firestorm @ 1 thread @ 3.0GHz fp32 threads==4
INFO: Using CPU backend
INFO: Using num_threads == 4
Creating ncnn net: efficientformerv2_s0
opt status: 111011101 ==> 000000001
(index: 985,  score: 11.782274), (index: 644,  score: 4.856472), (index: 108,  score: 3.921541), 
[1561 iters] min =  12.78ms max =  12.89ms median =  12.81ms mean =  12.81ms
Creating ncnn net: efficientformerv2_s1
opt status: 111011101 ==> 000000001
(index: 985,  score: 13.111187), (index: 89,  score: 4.181216), (index: 984,  score: 4.101791), 
[1067 iters] min =  18.73ms max =  18.80ms median =  18.76ms mean =  18.76ms
Creating ncnn net: efficientformerv2_s2
opt status: 111011101 ==> 000000001
(index: 985,  score: 12.502236), (index: 309,  score: 3.697202), (index: 22,  score: 3.686200), 
[659 iters] min =  30.32ms max =  30.41ms median =  30.36ms mean =  30.36ms
Creating ncnn net: mobilevitv2_050
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.305047), (index: 309,  score: 2.612882), (index: 584,  score: 2.330211), 
[3531 iters] min =   5.62ms max =   5.72ms median =   5.66ms mean =   5.67ms
Creating ncnn net: mobilevitv2_075
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.126369), (index: 309,  score: 2.389992), (index: 308,  score: 1.885909), 
[1906 iters] min =  10.46ms max =  10.54ms median =  10.49ms mean =  10.50ms
Creating ncnn net: mobilevitv2_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.254770), (index: 557,  score: 2.225806), (index: 309,  score: 1.942585), 
[1227 iters] min =  16.24ms max =  16.37ms median =  16.31ms mean =  16.31ms
Creating ncnn net: mobilevitv2_125
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.281292), (index: 309,  score: 1.960417), (index: 883,  score: 1.290664), 
[790 iters] min =  25.27ms max =  25.48ms median =  25.33ms mean =  25.33ms
Creating ncnn net: mobilevitv2_150
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.099491), (index: 308,  score: 2.251916), (index: 301,  score: 2.153155), 
[623 iters] min =  32.03ms max =  32.20ms median =  32.11ms mean =  32.11ms
Creating ncnn net: mobilevitv2_175
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.900545), (index: 494,  score: 2.110986), (index: 309,  score: 1.876236), 
[442 iters] min =  45.22ms max =  45.36ms median =  45.28ms mean =  45.28ms
Creating ncnn net: mobilevitv2_200
opt status: 111011101 ==> 000000001
(index: 985,  score: 8.531105), (index: 883,  score: 2.244246), (index: 309,  score: 2.230253), 
[380 iters] min =  52.62ms max =  52.74ms median =  52.69ms mean =  52.69ms
Creating ncnn net: mobilevit_xx_small
opt status: 111011101 ==> 000000001
(index: 999,  score: -nan), (index: 998,  score: -nan), (index: 997,  score: -nan), 
[6311 iters] min =   3.15ms max =   3.20ms median =   3.17ms mean =   3.17ms
Creating ncnn net: resnet50
opt status: 111011101 ==> 000000001
(index: 985,  score: 7.484058), (index: 113,  score: -4.938162), (index: 310,  score: -5.258441), 
[808 iters] min =  24.73ms max =  24.84ms median =  24.77ms mean =  24.77ms
Creating ncnn net: mobilenetv3_large_100
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.600927), (index: 308,  score: 2.362727), (index: 310,  score: 2.348943), 
[7127 iters] min =   2.79ms max =   2.84ms median =   2.81ms mean =   2.81ms
Creating ncnn net: tf_efficientnetv2_b0
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.552636), (index: 309,  score: 2.377687), (index: 108,  score: 2.288832), 
[3608 iters] min =   5.51ms max =   5.63ms median =   5.54ms mean =   5.54ms
Creating ncnn net: tf_efficientnetv2_b1
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.484985), (index: 861,  score: 2.249804), (index: 309,  score: 2.138905), 
[2525 iters] min =   7.89ms max =   7.96ms median =   7.92ms mean =   7.92ms
Creating ncnn net: tf_efficientnetv2_b2
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.816031), (index: 883,  score: 2.518352), (index: 113,  score: 2.038452), 
[1761 iters] min =  11.32ms max =  11.43ms median =  11.36ms mean =  11.36ms
Creating ncnn net: tf_efficientnetv2_b3
opt status: 111011101 ==> 000000001
(index: 985,  score: 9.093819), (index: 955,  score: 2.889793), (index: 947,  score: 2.188509), 
[981 iters] min =  20.34ms max =  20.47ms median =  20.41ms mean =  20.40ms
M1 firestorm @ 1 thread @ 3.0GHz fp16 threads==4
INFO: Using CPU backend
INFO: Using num_threads == 4
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.859375), (index: 644,  score: 4.875000), (index: 108,  score: 4.003906), 
[1349 iters] min =  14.81ms max =  14.90ms median =  14.84ms mean =  14.84ms
Creating ncnn net: efficientformerv2_s1
(index: 985,  score: 12.976562), (index: 308,  score: 4.152344), (index: 984,  score: 4.132812), 
[916 iters] min =  21.81ms max =  21.86ms median =  21.84ms mean =  21.84ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.453125), (index: 22,  score: 3.632812), (index: 309,  score: 3.628906), 
[585 iters] min =  34.17ms max =  34.24ms median =  34.20ms mean =  34.20ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 8.296875), (index: 309,  score: 2.617188), (index: 584,  score: 2.343750), 
[4722 iters] min =   4.21ms max =   4.28ms median =   4.24ms mean =   4.24ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 8.117188), (index: 309,  score: 2.384766), (index: 308,  score: 1.889648), 
[2616 iters] min =   7.63ms max =   7.68ms median =   7.65ms mean =   7.65ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 8.242188), (index: 557,  score: 2.226562), (index: 309,  score: 1.937500), 
[1710 iters] min =  11.67ms max =  11.74ms median =  11.70ms mean =  11.70ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 8.281250), (index: 309,  score: 1.969727), (index: 883,  score: 1.276367), 
[1174 iters] min =  17.00ms max =  17.08ms median =  17.04ms mean =  17.04ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.070312), (index: 308,  score: 2.230469), (index: 301,  score: 2.130859), 
[878 iters] min =  22.74ms max =  22.84ms median =  22.78ms mean =  22.78ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 8.882812), (index: 494,  score: 2.103516), (index: 309,  score: 1.873047), 
[669 iters] min =  29.87ms max =  29.96ms median =  29.92ms mean =  29.92ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 8.500000), (index: 883,  score: 2.234375), (index: 309,  score: 2.230469), 
[539 iters] min =  37.12ms max =  37.22ms median =  37.17ms mean =  37.17ms
Creating ncnn net: mobilevit_xx_small
(index: 999,  score: -nan), (index: 998,  score: -nan), (index: 997,  score: -nan), 
[8197 iters] min =   2.43ms max =   2.46ms median =   2.44ms mean =   2.44ms
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating ncnn net: resnet50
(index: 985,  score: 7.359375), (index: 113,  score: -4.937500), (index: 310,  score: -5.242188), 
[1216 iters] min =  16.43ms max =  16.48ms median =  16.45ms mean =  16.45ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 9.640625), (index: 308,  score: 2.371094), (index: 310,  score: 2.343750), 
[9063 iters] min =   2.19ms max =   2.23ms median =   2.21ms mean =   2.21ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 9.562500), (index: 309,  score: 2.359375), (index: 108,  score: 2.283203), 
[4269 iters] min =   4.67ms max =   4.71ms median =   4.68ms mean =   4.69ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 9.484375), (index: 861,  score: 2.244141), (index: 309,  score: 2.140625), 
[2972 iters] min =   6.71ms max =   6.76ms median =   6.73ms mean =   6.73ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 9.828125), (index: 883,  score: 2.531250), (index: 113,  score: 2.039062), 
[2106 iters] min =   9.48ms max =   9.52ms median =   9.50ms mean =   9.50ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.109375), (index: 955,  score: 2.888672), (index: 947,  score: 2.191406), 
[1187 iters] min =  16.83ms max =  16.89ms median =  16.86ms mean =  16.86ms
M1 firestorm @ 1 thread @ 3.0GHz int8 threads==4 w/kl-mod
INFO: Using CPU backend
INFO: Using num_threads == 4
Creating ncnn net: efficientformerv2_s0
(index: 985,  score: 11.296875), (index: 108,  score: 6.078125), (index: 644,  score: 5.914062), 
[1508 iters] min =  13.25ms max =  13.29ms median =  13.27ms mean =  13.27ms
Creating ncnn net: efficientformerv2_s1
(index: 898,  score: 8.937500), (index: 563,  score: 6.921875), (index: 27,  score: 6.207031), 
[1040 iters] min =  19.21ms max =  19.30ms median =  19.24ms mean =  19.24ms
Creating ncnn net: efficientformerv2_s2
(index: 985,  score: 12.578125), (index: 883,  score: 4.468750), (index: 309,  score: 4.156250), 
[673 iters] min =  29.72ms max =  29.80ms median =  29.75ms mean =  29.75ms
Creating ncnn net: mobilevitv2_050
(index: 985,  score: 10.930462), (index: 506,  score: 6.182128), (index: 584,  score: 5.944051), 
[4733 iters] min =   4.14ms max =   4.34ms median =   4.23ms mean =   4.23ms
Creating ncnn net: mobilevitv2_075
(index: 985,  score: 10.644029), (index: 584,  score: 3.415187), (index: 309,  score: 3.292385), 
[2896 iters] min =   6.84ms max =   7.01ms median =   6.91ms mean =   6.91ms
Creating ncnn net: mobilevitv2_100
(index: 985,  score: 12.304844), (index: 309,  score: 4.603567), (index: 584,  score: 3.558692), 
[2097 iters] min =   9.45ms max =   9.66ms median =   9.53ms mean =   9.54ms
Creating ncnn net: mobilevitv2_125
(index: 985,  score: 16.227858), (index: 309,  score: 5.082381), (index: 738,  score: 3.812296), 
[1507 iters] min =  13.19ms max =  17.29ms median =  13.26ms mean =  13.27ms
Creating ncnn net: mobilevitv2_150
(index: 985,  score: 9.671791), (index: 309,  score: 3.081745), (index: 308,  score: 2.859699), 
[1212 iters] min =  16.38ms max =  21.26ms median =  16.49ms mean =  16.51ms
Creating ncnn net: mobilevitv2_175
(index: 985,  score: 9.482336), (index: 681,  score: 2.202604), (index: 309,  score: 2.173967), 
[953 iters] min =  20.87ms max =  25.03ms median =  20.98ms mean =  20.99ms
Creating ncnn net: mobilevitv2_200
(index: 985,  score: 11.824309), (index: 883,  score: 4.446024), (index: 309,  score: 4.375680), 
[818 iters] min =  24.32ms max =  31.35ms median =  24.44ms mean =  24.46ms
Creating ncnn net: mobilevit_xx_small
(index: 999,  score: -nan), (index: 998,  score: -nan), (index: 997,  score: -nan), 
[8233 iters] min =   2.42ms max =   2.46ms median =   2.43ms mean =   2.43ms
Creating ncnn net: resnet50
(index: 985,  score: 6.716446), (index: 113,  score: -4.833062), (index: 310,  score: -5.049811), 
[2106 iters] min =   9.47ms max =   9.62ms median =   9.50ms mean =   9.50ms
Creating ncnn net: mobilenetv3_large_100
(index: 985,  score: 10.202103), (index: 883,  score: 2.712523), (index: 533,  score: 2.558361), 
[9485 iters] min =   2.10ms max =   2.13ms median =   2.11ms mean =   2.11ms
Creating ncnn net: tf_efficientnetv2_b0
(index: 985,  score: 13.037141), (index: 108,  score: 3.455601), (index: 309,  score: 3.431606), 
[4942 iters] min =   4.03ms max =   4.09ms median =   4.05ms mean =   4.05ms
Creating ncnn net: tf_efficientnetv2_b1
(index: 985,  score: 12.271066), (index: 309,  score: 3.071457), (index: 995,  score: 2.809345), 
[3286 iters] min =   6.02ms max =   6.14ms median =   6.11ms mean =   6.09ms
Creating ncnn net: tf_efficientnetv2_b2
(index: 985,  score: 11.739453), (index: 309,  score: 3.525121), (index: 883,  score: 3.265590), 
[2459 iters] min =   8.10ms max =   8.19ms median =   8.14ms mean =   8.13ms
Creating ncnn net: tf_efficientnetv2_b3
(index: 985,  score: 9.467087), (index: 947,  score: 2.215796), (index: 955,  score: 2.111230), 
[1455 iters] min =  13.69ms max =  13.79ms median =  13.76ms mean =  13.75ms

mnn

M1 firestorm @ 1 thread @ 3.0GHz w/ 2.6.2 conversion
INFO: Using CPU backend
INFO: Using num_threads == 1
The device support i8sdot:1, support fp16:1, support i8mm: 1
Creating MNN Interpreter: efficientformerv2_s0
(index: 985,  score: 11.768960), (index: 644,  score: 4.829375), (index: 108,  score: 3.931292), 
[1379 iters] min =  14.49ms max =  14.66ms median =  14.51ms mean =  14.51ms
Creating MNN Interpreter: efficientformerv2_s1
(index: 985,  score: 13.083185), (index: 89,  score: 4.154803), (index: 984,  score: 4.072508), 
[879 iters] min =  22.73ms max =  22.83ms median =  22.77ms mean =  22.78ms
Creating MNN Interpreter: efficientformerv2_s2
(index: 985,  score: 12.495360), (index: 309,  score: 3.706549), (index: 22,  score: 3.682925), 
[491 iters] min =  40.70ms max =  40.86ms median =  40.74ms mean =  40.74ms
Creating MNN Interpreter: SwiftFormer_XS
(index: 985,  score: 11.912077), (index: 883,  score: 4.997910), (index: 310,  score: 4.615772), 
[993 iters] min =  20.13ms max =  20.24ms median =  20.15ms mean =  20.15ms
Creating MNN Interpreter: SwiftFormer_S
(index: 985,  score: 12.532909), (index: 89,  score: 4.324093), (index: 720,  score: 4.182640), 
[668 iters] min =  29.91ms max =  30.07ms median =  29.95ms mean =  29.95ms
Creating MNN Interpreter: SwiftFormer_L1
(index: 985,  score: 13.235222), (index: 309,  score: 3.921143), (index: 310,  score: 3.798431), 
[440 iters] min =  45.53ms max =  45.67ms median =  45.54ms mean =  45.55ms
Creating MNN Interpreter: EMO_1M
(index: 985,  score: 10.015739), (index: 309,  score: 4.272019), (index: 310,  score: 3.913734), 
[1625 iters] min =  12.28ms max =  12.67ms median =  12.31ms mean =  12.32ms
Creating MNN Interpreter: EMO_2M
(index: 985,  score: 9.377331), (index: 309,  score: 3.261263), (index: 308,  score: 3.011570), 
[1072 iters] min =  18.61ms max =  18.79ms median =  18.66ms mean =  18.66ms
Creating MNN Interpreter: EMO_5M
(index: 985,  score: 9.150205), (index: 883,  score: 2.993564), (index: 308,  score: 2.458643), 
[611 iters] min =  32.74ms max =  33.51ms median =  32.76ms mean =  32.76ms
Creating MNN Interpreter: EMO_6M
(index: 985,  score: 9.407994), (index: 883,  score: 2.236737), (index: 309,  score: 2.090058), 
[574 iters] min =  34.81ms max =  35.00ms median =  34.88ms mean =  34.88ms
Creating MNN Interpreter: edgenext_xx_small
(index: 985,  score: 10.881224), (index: 309,  score: 4.952091), (index: 310,  score: 4.636828), 
[1920 iters] min =  10.40ms max =  10.56ms median =  10.42ms mean =  10.42ms
Creating MNN Interpreter: edgenext_x_small
(index: 985,  score: 9.792659), (index: 309,  score: 4.592906), (index: 308,  score: 3.815865), 
[1002 iters] min =  19.94ms max =  20.18ms median =  19.95ms mean =  19.96ms
Creating MNN Interpreter: edgenext_small
(index: 985,  score: 12.166285), (index: 309,  score: 4.538562), (index: 308,  score: 4.057699), 
[495 iters] min =  40.40ms max =  40.58ms median =  40.43ms mean =  40.44ms
Creating MNN Interpreter: mobilevitv2_050
(index: 985,  score: 8.315649), (index: 309,  score: 2.612311), (index: 584,  score: 2.352622), 
[1077 iters] min =  18.52ms max =  18.79ms median =  18.58ms mean =  18.58ms
Creating MNN Interpreter: mobilevitv2_075
(index: 985,  score: 8.129767), (index: 309,  score: 2.389330), (index: 308,  score: 1.880279), 
[573 iters] min =  34.90ms max =  35.27ms median =  34.95ms mean =  34.96ms
Creating MNN Interpreter: mobilevitv2_100
(index: 985,  score: 8.256266), (index: 557,  score: 2.220439), (index: 309,  score: 1.944910), 
[360 iters] min =  55.61ms max =  56.08ms median =  55.66ms mean =  55.67ms
Creating MNN Interpreter: mobilevitv2_125
(index: 985,  score: 8.281974), (index: 309,  score: 1.962234), (index: 883,  score: 1.285449), 
[249 iters] min =  80.32ms max =  80.94ms median =  80.37ms mean =  80.38ms
Creating MNN Interpreter: mobilevitv2_150
(index: 985,  score: 9.098869), (index: 308,  score: 2.259607), (index: 301,  score: 2.159089), 
[183 iters] min = 109.37ms max = 110.05ms median = 109.41ms mean = 109.44ms
Creating MNN Interpreter: mobilevitv2_175
(index: 985,  score: 8.888629), (index: 494,  score: 2.104702), (index: 309,  score: 1.869344), 
[141 iters] min = 142.69ms max = 143.23ms median = 142.74ms mean = 142.79ms
Creating MNN Interpreter: mobilevitv2_200
(index: 985,  score: 8.531386), (index: 883,  score: 2.248808), (index: 309,  score: 2.237848), 
[111 iters] min = 180.40ms max = 181.30ms median = 180.49ms mean = 180.56ms
Creating MNN Interpreter: mobilevit_xx_small
(index: 985,  score: 12.652774), (index: 309,  score: 6.357562), (index: 308,  score: 6.236053), 
[1121 iters] min =  17.83ms max =  18.02ms median =  17.85ms mean =  17.86ms
Creating MNN Interpreter: mobilevit_x_small
(index: 985,  score: 12.998943), (index: 89,  score: 6.411653), (index: 308,  score: 5.775373), 
[527 iters] min =  37.94ms max =  38.32ms median =  37.98ms mean =  37.99ms
Creating MNN Interpreter: mobilevit_small
(index: 985,  score: 10.661409), (index: 838,  score: 4.319293), (index: 309,  score: 4.076161), 
[333 iters] min =  60.08ms max =  60.62ms median =  60.12ms mean =  60.14ms
Creating MNN Interpreter: LeViT_128S
(index: 985,  score: 11.427715), (index: 308,  score: 3.451081), (index: 309,  score: 3.319754), 
[2279 iters] min =   8.75ms max =   8.85ms median =   8.78ms mean =   8.78ms
Creating MNN Interpreter: LeViT_128
(index: 985,  score: 11.089683), (index: 309,  score: 3.409015), (index: 113,  score: 3.385430), 
[1691 iters] min =  11.78ms max =  11.89ms median =  11.83ms mean =  11.83ms
Creating MNN Interpreter: LeViT_192
(index: 985,  score: 11.594749), (index: 308,  score: 3.186351), (index: 644,  score: 3.177884), 
[1156 iters] min =  17.28ms max =  17.42ms median =  17.31ms mean =  17.31ms
Creating MNN Interpreter: LeViT_256
(index: 985,  score: 11.363626), (index: 108,  score: 3.341140), (index: 310,  score: 2.929424), 
[700 iters] min =  28.57ms max =  28.81ms median =  28.60ms mean =  28.61ms
Creating MNN Interpreter: resnet50
(index: 985,  score: 7.495943), (index: 113,  score: -4.947984), (index: 310,  score: -5.267875), 
[271 iters] min =  73.86ms max =  74.83ms median =  73.92ms mean =  73.93ms
Creating MNN Interpreter: mobilenetv3_large_100
(index: 985,  score: 9.592710), (index: 308,  score: 2.354276), (index: 310,  score: 2.337051), 
[2352 iters] min =   8.49ms max =   8.56ms median =   8.50ms mean =   8.50ms
Creating MNN Interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.555032), (index: 309,  score: 2.378399), (index: 108,  score: 2.289180), 
[1096 iters] min =  18.23ms max =  18.42ms median =  18.26ms mean =  18.26ms
Creating MNN Interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.484729), (index: 861,  score: 2.258651), (index: 309,  score: 2.134489), 
[746 iters] min =  26.80ms max =  27.15ms median =  26.81ms mean =  26.82ms
Creating MNN Interpreter: tf_efficientnetv2_b2
(index: 985,  score: 9.816973), (index: 883,  score: 2.518728), (index: 113,  score: 2.046238), 
[517 iters] min =  38.70ms max =  39.17ms median =  38.73ms mean =  38.73ms
Creating MNN Interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.089290), (index: 955,  score: 2.892854), (index: 947,  score: 2.188154), 
[302 iters] min =  66.31ms max =  67.13ms median =  66.34ms mean =  66.36ms

tensorflow lite

M1 firestorm @ 1 thread @ 3.0GHz tinynn fp32
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 13.800571), (index: 644,  score: 6.719913), (index: 662,  score: 4.357441), 
[1183 iters] min =  16.89ms max =  25.29ms median =  16.91ms mean =  16.92ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 11.002513), (index: 892,  score: 5.913536), (index: 794,  score: 5.847847), 
[746 iters] min =  26.83ms max =  26.89ms median =  26.84ms mean =  26.84ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 14.202505), (index: 574,  score: 5.209904), (index: 650,  score: 4.950992), 
[409 iters] min =  48.88ms max =  61.16ms median =  48.90ms mean =  48.93ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 16.348614), (index: 107,  score: 8.219887), (index: 308,  score: 7.765065), 
[873 iters] min =  22.91ms max =  22.97ms median =  22.93ms mean =  22.93ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 10.332458), (index: 309,  score: 4.304403), (index: 507,  score: 3.876854), 
[568 iters] min =  35.21ms max =  35.28ms median =  35.22ms mean =  35.22ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.199683), (index: 310,  score: 4.649525), (index: 309,  score: 4.089820), 
[362 iters] min =  55.36ms max =  55.44ms median =  55.38ms mean =  55.38ms
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 9.241662), (index: 328,  score: 7.229661), (index: 619,  score: 6.890592), 
[1538 iters] min =  12.99ms max =  13.11ms median =  13.01ms mean =  13.01ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.554611), (index: 493,  score: 6.152699), (index: 310,  score: 3.873620), 
[987 iters] min =  20.26ms max =  20.34ms median =  20.28ms mean =  20.28ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 8.625879), (index: 794,  score: 5.527351), (index: 108,  score: 4.698321), 
[533 iters] min =  37.55ms max =  37.62ms median =  37.57ms mean =  37.57ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 9.466664), (index: 446,  score: 5.847961), (index: 885,  score: 4.761618), 
[499 iters] min =  40.08ms max =  40.19ms median =  40.10ms mean =  40.10ms
Creating tflite runtime interpreter: edgenext_xx_small
(index: 144,  score: 5.642828), (index: 858,  score: 5.068350), (index: 132,  score: 5.017061), 
[1862 iters] min =  10.72ms max =  10.86ms median =  10.74ms mean =  10.74ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 904,  score: 9.758960), (index: 905,  score: 8.679010), (index: 828,  score: 7.538647), 
[954 iters] min =  20.95ms max =  21.09ms median =  20.98ms mean =  20.98ms
Creating tflite runtime interpreter: edgenext_small
(index: 904,  score: 6.315926), (index: 753,  score: 5.907308), (index: 905,  score: 5.188027), 
[475 iters] min =  42.09ms max =  42.17ms median =  42.13ms mean =  42.13ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 905,  score: 7.073186), (index: 688,  score: 5.798759), (index: 530,  score: 4.821216), 
[1171 iters] min =  17.08ms max =  17.25ms median =  17.09ms mean =  17.09ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 904,  score: 6.283208), (index: 753,  score: 6.140928), (index: 905,  score: 5.674746), 
[612 iters] min =  32.66ms max =  32.72ms median =  32.68ms mean =  32.68ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 904,  score: 6.422704), (index: 753,  score: 4.768656), (index: 905,  score: 3.757758), 
[372 iters] min =  53.76ms max =  53.83ms median =  53.77ms mean =  53.77ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 549,  score: 4.407668), (index: 905,  score: 4.018123), (index: 753,  score: 3.660830), 
[252 iters] min =  79.62ms max =  79.71ms median =  79.64ms mean =  79.64ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 904,  score: 6.959464), (index: 905,  score: 5.279493), (index: 556,  score: 4.383082), 
[181 iters] min = 110.97ms max = 111.04ms median = 110.99ms mean = 110.99ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 905,  score: 7.720383), (index: 904,  score: 6.793842), (index: 753,  score: 6.216552), 
[137 iters] min = 146.93ms max = 147.09ms median = 146.95ms mean = 146.96ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 904,  score: 7.456795), (index: 905,  score: 5.135217), (index: 556,  score: 4.294895), 
[107 iters] min = 188.46ms max = 188.61ms median = 188.48ms mean = 188.49ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 905,  score: 9.074959), (index: 581,  score: 7.366666), (index: 530,  score: 6.987810), 
[1478 iters] min =  13.52ms max =  13.61ms median =  13.53ms mean =  13.53ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 905,  score: 8.960419), (index: 904,  score: 7.904361), (index: 753,  score: 6.592516), 
[620 iters] min =  32.26ms max =  32.33ms median =  32.27ms mean =  32.27ms
Creating tflite runtime interpreter: mobilevit_small
(index: 904,  score: 6.754923), (index: 905,  score: 6.661246), (index: 858,  score: 5.174719), 
[356 iters] min =  56.26ms max =  56.34ms median =  56.28ms mean =  56.28ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 8.677929), (index: 868,  score: 8.497841), (index: 446,  score: 7.851535), 
[1894 iters] min =  10.55ms max =  10.58ms median =  10.56ms mean =  10.56ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 9.898071), (index: 619,  score: 5.420589), (index: 539,  score: 4.751773), 
[1411 iters] min =  14.17ms max =  14.21ms median =  14.18ms mean =  14.18ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 10.134396), (index: 328,  score: 7.682946), (index: 619,  score: 6.307396), 
[929 iters] min =  21.52ms max =  21.58ms median =  21.53ms mean =  21.53ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 8.615749), (index: 818,  score: 6.255535), (index: 619,  score: 6.188113), 
[552 iters] min =  36.22ms max =  36.31ms median =  36.24ms mean =  36.24ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.842050), (index: 652,  score: -3.425980), (index: 439,  score: -4.438686), 
[164 iters] min = 122.44ms max = 122.57ms median = 122.46ms mean = 122.47ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 112,  score: 6.790292), (index: 985,  score: 5.795063), (index: 591,  score: 5.150109), 
[2509 iters] min =   7.97ms max =   8.04ms median =   7.97ms mean =   7.97ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
M1 firestorm @ 1 thread @ 3.0GHz tinynn int8 dynamic
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 10.414447), (index: 473,  score: 7.323678), (index: 243,  score: 5.948439), 
[1785 iters] min =  11.19ms max =  11.44ms median =  11.21ms mean =  11.21ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 17.765656), (index: 89,  score: 8.259610), (index: 512,  score: 7.648966), 
[1233 iters] min =  16.21ms max =  16.42ms median =  16.23ms mean =  16.23ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 10.992670), (index: 335,  score: 6.229464), (index: 451,  score: 6.014560), 
[759 iters] min =  26.33ms max =  26.48ms median =  26.35ms mean =  26.36ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 12.597744), (index: 883,  score: 6.429352), (index: 584,  score: 6.104802), 
[1469 iters] min =  13.60ms max =  13.82ms median =  13.62ms mean =  13.62ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 13.702253), (index: 632,  score: 7.228092), (index: 904,  score: 5.929401), 
[1135 iters] min =  17.61ms max =  17.74ms median =  17.63ms mean =  17.63ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.422840), (index: 904,  score: 10.359863), (index: 556,  score: 5.901742), 
[823 iters] min =  24.30ms max =  24.39ms median =  24.32ms mean =  24.32ms
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 10.772147), (index: 310,  score: 4.265167), (index: 309,  score: 4.034026), 
[1696 iters] min =  11.78ms max =  11.89ms median =  11.79ms mean =  11.79ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.784461), (index: 309,  score: 3.289332), (index: 310,  score: 3.090404), 
[1233 iters] min =  16.21ms max =  16.32ms median =  16.22ms mean =  16.23ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 8.009010), (index: 310,  score: 2.295238), (index: 311,  score: 2.265032), 
[820 iters] min =  24.38ms max =  24.47ms median =  24.40ms mean =  24.40ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 9.536195), (index: 883,  score: 2.864874), (index: 968,  score: 2.779290), 
[783 iters] min =  25.53ms max =  25.58ms median =  25.55ms mean =  25.55ms
Creating tflite runtime interpreter: edgenext_xx_small
(index: 144,  score: 5.726498), (index: 132,  score: 5.228430), (index: 858,  score: 4.910030), 
[3219 iters] min =   6.21ms max =   6.30ms median =   6.22ms mean =   6.21ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 905,  score: 7.151570), (index: 904,  score: 5.593434), (index: 539,  score: 5.189555), 
[1820 iters] min =  10.98ms max =  11.17ms median =  10.99ms mean =  10.99ms
Creating tflite runtime interpreter: edgenext_small
(index: 905,  score: 7.833123), (index: 753,  score: 5.813052), (index: 904,  score: 4.813413), 
[1087 iters] min =  18.39ms max =  18.57ms median =  18.40ms mean =  18.41ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 905,  score: 6.351662), (index: 688,  score: 6.100896), (index: 811,  score: 5.178001), 
[1517 iters] min =  13.17ms max =  24.71ms median =  13.18ms mean =  13.19ms
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
Creating tflite runtime interpreter: mobilevitv2_150
(index: 885,  score: 4.623362), (index: 905,  score: 3.750659), (index: 148,  score: 3.582521), 
[404 iters] min =  49.55ms max =  49.69ms median =  49.57ms mean =  49.57ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 885,  score: 5.663316), (index: 854,  score: 5.009308), (index: 144,  score: 4.522904), 
[328 iters] min =  61.08ms max =  61.18ms median =  61.11ms mean =  61.11ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 905,  score: 6.786233), (index: 650,  score: 5.424253), (index: 904,  score: 4.502124), 
[272 iters] min =  73.70ms max =  73.83ms median =  73.73ms mean =  73.73ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 898,  score: 7.621788), (index: 611,  score: 7.552627), (index: 782,  score: 7.434354), 
[1802 iters] min =  11.09ms max =  11.21ms median =  11.10ms mean =  11.10ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 905,  score: 10.061533), (index: 904,  score: 8.190913), (index: 818,  score: 6.948528), 
[874 iters] min =  22.79ms max =  22.94ms median =  22.89ms mean =  22.89ms
Creating tflite runtime interpreter: mobilevit_small
(index: 905,  score: 8.444880), (index: 904,  score: 3.538346), (index: 794,  score: 3.359672), 
[633 iters] min =  31.61ms max =  31.68ms median =  31.63ms mean =  31.63ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 11.338488), (index: 744,  score: 3.550334), (index: 309,  score: 3.416615), 
[3751 iters] min =   5.32ms max =   5.46ms median =   5.33ms mean =   5.33ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 11.076033), (index: 309,  score: 3.194498), (index: 113,  score: 3.029531), 
[2761 iters] min =   7.23ms max =   7.35ms median =   7.24ms mean =   7.25ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.501357), (index: 326,  score: 3.302804), (index: 644,  score: 3.170937), 
[2101 iters] min =   9.51ms max =   9.62ms median =   9.52ms mean =   9.52ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.314730), (index: 108,  score: 3.116097), (index: 309,  score: 3.107525), 
[1431 iters] min =  13.95ms max =  14.02ms median =  13.98ms mean =  13.99ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.214152), (index: 310,  score: -4.907701), (index: 113,  score: -4.919555), 
[608 iters] min =  32.87ms max =  32.96ms median =  32.91ms mean =  32.91ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.674332), (index: 308,  score: 2.503336), (index: 883,  score: 2.451423), 
[3183 iters] min =   6.28ms max =   6.36ms median =   6.28ms mean =   6.28ms
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
M1 firestorm @ 1 thread @ 3.0GHz tinynn int8 ptq *fake*
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 990,  score: 15.554351), (index: 957,  score: 15.554351), (index: 956,  score: 15.554351), 
[1976 iters] min =  10.11ms max =  10.25ms median =  10.12ms mean =  10.12ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 910,  score: 14.773200), (index: 892,  score: 14.773200), (index: 641,  score: 14.773200), 
[1332 iters] min =  15.01ms max =  15.18ms median =  15.02ms mean =  15.02ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 819,  score: 13.587024), (index: 818,  score: 13.587024), (index: 785,  score: 12.763567), 
[813 iters] min =  24.57ms max =  37.65ms median =  24.59ms mean =  24.60ms
SwiftFormer_XS model doesn't exist!!!
SwiftFormer_S model doesn't exist!!!
SwiftFormer_L1 model doesn't exist!!!
Creating tflite runtime interpreter: EMO_1M
(index: 985,  score: 11.310929), (index: 108,  score: 6.861964), (index: 310,  score: 5.504652), 
[2993 iters] min =   6.67ms max =   6.77ms median =   6.68ms mean =   6.68ms
Creating tflite runtime interpreter: EMO_2M
(index: 985,  score: 9.640327), (index: 883,  score: 3.666040), (index: 712,  score: 3.530261), 
[2033 iters] min =   9.83ms max =  10.04ms median =   9.84ms mean =   9.84ms
Creating tflite runtime interpreter: EMO_5M
(index: 985,  score: 5.184752), (index: 506,  score: 3.923597), (index: 644,  score: 3.573275), 
[1290 iters] min =  15.49ms max =  15.73ms median =  15.50ms mean =  15.50ms
Creating tflite runtime interpreter: EMO_6M
(index: 985,  score: 6.443181), (index: 905,  score: 3.692160), (index: 971,  score: 3.474974), 
[1203 iters] min =  16.61ms max =  16.81ms median =  16.63ms mean =  16.63ms
edgenext_xx_small model doesn't exist!!!
edgenext_x_small model doesn't exist!!!
edgenext_small model doesn't exist!!!
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
LeViT_128S model doesn't exist!!!
LeViT_128 model doesn't exist!!!
LeViT_192 model doesn't exist!!!
LeViT_256 model doesn't exist!!!
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 5.906343), (index: 310,  score: -4.200066), (index: 308,  score: -4.725074), 
[737 iters] min =  27.16ms max =  27.23ms median =  27.17ms mean =  27.17ms
mobilenetv3_large_100 model doesn't exist!!!
tf_efficientnetv2_b0 model doesn't exist!!!
tf_efficientnetv2_b1 model doesn't exist!!!
tf_efficientnetv2_b2 model doesn't exist!!!
tf_efficientnetv2_b3 model doesn't exist!!!
M1 firestorm @ 1 thread @ 3.0GHz onnx-tf fp32/fp16/bf16
INFO: Using num_threads == 1
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 35 nodes delegated out of 536 nodes with 35 partitions.

INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 11.767029), (index: 644,  score: 4.848304), (index: 108,  score: 3.925714), 
[959 iters] min =  20.79ms max =  31.35ms median =  20.85ms mean =  20.86ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 13.112434), (index: 89,  score: 4.162668), (index: 984,  score: 4.077538), 
[613 iters] min =  32.60ms max =  32.89ms median =  32.67ms mean =  32.67ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 12.485476), (index: 22,  score: 3.693241), (index: 309,  score: 3.691998), 
[347 iters] min =  57.71ms max =  57.81ms median =  57.74ms mean =  57.74ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001739), (index: 310,  score: 4.622924), 
[800 iters] min =  25.00ms max =  25.10ms median =  25.03ms mean =  25.03ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334188), (index: 720,  score: 4.178122), 
[528 iters] min =  37.86ms max =  38.06ms median =  37.90ms mean =  37.90ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 13.233636), (index: 309,  score: 3.921285), (index: 310,  score: 3.807555), 
[338 iters] min =  59.12ms max =  59.82ms median =  59.19ms mean =  59.20ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating tflite runtime interpreter: edgenext_xx_small
(index: 985,  score: 10.885460), (index: 309,  score: 4.954112), (index: 310,  score: 4.638608), 
[1129 iters] min =  17.68ms max =  17.76ms median =  17.71ms mean =  17.71ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595185), (index: 308,  score: 3.817009), 
[613 iters] min =  32.64ms max =  32.74ms median =  32.67ms mean =  32.67ms
Creating tflite runtime interpreter: edgenext_small
(index: 985,  score: 12.156300), (index: 309,  score: 4.532577), (index: 308,  score: 4.049805), 
[318 iters] min =  62.88ms max =  63.04ms median =  62.94ms mean =  62.94ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 985,  score: 8.315767), (index: 309,  score: 2.612426), (index: 584,  score: 2.352666), 
[797 iters] min =  25.07ms max =  25.22ms median =  25.12ms mean =  25.12ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 985,  score: 8.129782), (index: 309,  score: 2.389380), (index: 308,  score: 1.880313), 
[421 iters] min =  47.45ms max =  58.20ms median =  47.50ms mean =  47.53ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 985,  score: 8.256241), (index: 557,  score: 2.220457), (index: 309,  score: 1.944935), 
[260 iters] min =  77.05ms max =  77.25ms median =  77.08ms mean =  77.08ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 985,  score: 8.282048), (index: 309,  score: 1.962256), (index: 883,  score: 1.285460), 
[178 iters] min = 112.48ms max = 112.76ms median = 112.54ms mean = 112.54ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 985,  score: 9.099127), (index: 308,  score: 2.259560), (index: 301,  score: 2.159019), 
[129 iters] min = 155.09ms max = 155.38ms median = 155.15ms mean = 155.15ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 985,  score: 8.888693), (index: 494,  score: 2.104596), (index: 309,  score: 1.869223), 
[98 iters] min = 204.19ms max = 204.46ms median = 204.23ms mean = 204.24ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 985,  score: 8.531492), (index: 883,  score: 2.249018), (index: 309,  score: 2.237880), 
[77 iters] min = 261.12ms max = 271.09ms median = 261.17ms mean = 261.30ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 985,  score: 12.652472), (index: 309,  score: 6.357603), (index: 308,  score: 6.236127), 
[968 iters] min =  20.65ms max =  20.72ms median =  20.68ms mean =  20.68ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 985,  score: 12.998844), (index: 89,  score: 6.411969), (index: 308,  score: 5.775460), 
[393 iters] min =  50.88ms max =  51.10ms median =  50.91ms mean =  50.91ms
Creating tflite runtime interpreter: mobilevit_small
(index: 985,  score: 10.661425), (index: 838,  score: 4.319444), (index: 309,  score: 4.076351), 
[241 iters] min =  83.25ms max =  83.35ms median =  83.29ms mean =  83.29ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 11.427817), (index: 308,  score: 3.451130), (index: 309,  score: 3.319763), 
[1504 iters] min =  13.28ms max =  13.35ms median =  13.30ms mean =  13.30ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409034), (index: 113,  score: 3.385414), 
[1143 iters] min =  17.46ms max =  27.34ms median =  17.50ms mean =  17.51ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186352), (index: 644,  score: 3.177924), 
[759 iters] min =  26.32ms max =  26.41ms median =  26.36ms mean =  26.36ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341186), (index: 310,  score: 2.929489), 
[448 iters] min =  44.62ms max =  57.70ms median =  44.64ms mean =  44.67ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.495987), (index: 113,  score: -4.947908), (index: 310,  score: -5.267951), 
[161 iters] min = 124.29ms max = 124.40ms median = 124.33ms mean = 124.33ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.592711), (index: 308,  score: 2.354277), (index: 310,  score: 2.337051), 
[1907 iters] min =  10.48ms max =  10.61ms median =  10.49ms mean =  10.49ms
Creating tflite runtime interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.554760), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[726 iters] min =  27.50ms max =  27.65ms median =  27.57ms mean =  27.57ms
Creating tflite runtime interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.484579), (index: 861,  score: 2.258523), (index: 309,  score: 2.134490), 
[466 iters] min =  42.93ms max =  43.06ms median =  42.98ms mean =  42.98ms
Creating tflite runtime interpreter: tf_efficientnetv2_b2
(index: 985,  score: 9.816823), (index: 883,  score: 2.518672), (index: 113,  score: 2.046143), 
[334 iters] min =  59.91ms max =  70.59ms median =  59.97ms mean =  60.00ms
Creating tflite runtime interpreter: tf_efficientnetv2_b3
(index: 985,  score: 9.089396), (index: 955,  score: 2.892823), (index: 947,  score: 2.188147), 
[198 iters] min = 101.34ms max = 101.56ms median = 101.40ms mean = 101.40ms
M1 firestorm @ 1 thread @ 3.0GHz onnx-tf dynamic int8
Creating tflite runtime interpreter: efficientformerv2_s0
INFO: Created TensorFlow Lite delegate for select TF ops.
INFO: TfLiteFlexDelegate delegate: 35 nodes delegated out of 536 nodes with 35 partitions.

INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
(index: 985,  score: 9.847589), (index: 473,  score: 6.360453), (index: 623,  score: 6.333659), 
[1380 iters] min =  14.38ms max =  14.53ms median =  14.50ms mean =  14.50ms
Creating tflite runtime interpreter: efficientformerv2_s1
(index: 985,  score: 12.012066), (index: 738,  score: 7.356307), (index: 28,  score: 6.549445), 
[934 iters] min =  21.26ms max =  21.49ms median =  21.42ms mean =  21.42ms
Creating tflite runtime interpreter: efficientformerv2_s2
(index: 985,  score: 12.407644), (index: 723,  score: 5.381139), (index: 906,  score: 4.645674), 
[584 iters] min =  34.13ms max =  34.31ms median =  34.26ms mean =  34.26ms
Creating tflite runtime interpreter: SwiftFormer_XS
(index: 985,  score: 12.037054), (index: 883,  score: 5.053818), (index: 308,  score: 4.783157), 
[1359 iters] min =  14.63ms max =  15.00ms median =  14.72ms mean =  14.72ms
Creating tflite runtime interpreter: SwiftFormer_S
(index: 985,  score: 13.849318), (index: 720,  score: 5.001857), (index: 89,  score: 4.420921), 
[1039 iters] min =  19.14ms max =  19.33ms median =  19.26ms mean =  19.26ms
Creating tflite runtime interpreter: SwiftFormer_L1
(index: 985,  score: 14.384110), (index: 309,  score: 3.923572), (index: 310,  score: 3.830448), 
[744 iters] min =  26.82ms max =  26.99ms median =  26.88ms mean =  26.88ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating tflite runtime interpreter: edgenext_xx_small
(index: 985,  score: 10.747143), (index: 883,  score: 4.571187), (index: 309,  score: 4.446349), 
[1342 iters] min =  14.88ms max =  14.96ms median =  14.91ms mean =  14.91ms
Creating tflite runtime interpreter: edgenext_x_small
(index: 985,  score: 9.954880), (index: 309,  score: 4.487042), (index: 308,  score: 4.067084), 
[777 iters] min =  25.75ms max =  25.82ms median =  25.77ms mean =  25.77ms
Creating tflite runtime interpreter: edgenext_small
(index: 985,  score: 12.468886), (index: 309,  score: 4.483033), (index: 308,  score: 4.088212), 
[478 iters] min =  41.86ms max =  42.02ms median =  41.90ms mean =  41.90ms
Creating tflite runtime interpreter: mobilevitv2_050
(index: 985,  score: 8.055989), (index: 309,  score: 2.675721), (index: 94,  score: 2.217565), 
[1071 iters] min =  18.60ms max =  18.73ms median =  18.67ms mean =  18.67ms
Creating tflite runtime interpreter: mobilevitv2_075
(index: 985,  score: 8.002374), (index: 309,  score: 2.393991), (index: 308,  score: 1.741684), 
[669 iters] min =  29.83ms max =  29.99ms median =  29.91ms mean =  29.91ms
Creating tflite runtime interpreter: mobilevitv2_100
(index: 985,  score: 8.095229), (index: 557,  score: 2.208805), (index: 73,  score: 1.793792), 
[468 iters] min =  42.70ms max =  55.76ms median =  42.73ms mean =  42.76ms
Creating tflite runtime interpreter: mobilevitv2_125
(index: 985,  score: 8.135590), (index: 309,  score: 2.029721), (index: 132,  score: 1.361114), 
[346 iters] min =  57.81ms max =  58.20ms median =  57.90ms mean =  57.90ms
Creating tflite runtime interpreter: mobilevitv2_150
(index: 985,  score: 8.892390), (index: 308,  score: 2.248269), (index: 309,  score: 2.041805), 
[271 iters] min =  73.78ms max =  74.17ms median =  73.82ms mean =  73.82ms
Creating tflite runtime interpreter: mobilevitv2_175
(index: 985,  score: 9.095932), (index: 309,  score: 2.302547), (index: 308,  score: 1.961285), 
[221 iters] min =  90.58ms max =  90.88ms median =  90.64ms mean =  90.65ms
Creating tflite runtime interpreter: mobilevitv2_200
(index: 985,  score: 8.526460), (index: 883,  score: 2.691330), (index: 309,  score: 2.271109), 
[182 iters] min = 109.84ms max = 110.26ms median = 109.90ms mean = 109.90ms
Creating tflite runtime interpreter: mobilevit_xx_small
(index: 985,  score: 12.936302), (index: 309,  score: 6.211125), (index: 308,  score: 6.109789), 
[1225 iters] min =  16.29ms max =  25.12ms median =  16.32ms mean =  16.33ms
Creating tflite runtime interpreter: mobilevit_x_small
(index: 985,  score: 12.155066), (index: 951,  score: 6.548617), (index: 89,  score: 6.001575), 
[528 iters] min =  37.88ms max =  38.06ms median =  37.92ms mean =  37.92ms
Creating tflite runtime interpreter: mobilevit_small
(index: 985,  score: 10.645117), (index: 309,  score: 4.341079), (index: 838,  score: 4.252186), 
[395 iters] min =  50.62ms max =  50.94ms median =  50.65ms mean =  50.66ms
Creating tflite runtime interpreter: LeViT_128S
(index: 985,  score: 10.650167), (index: 644,  score: 4.845832), (index: 949,  score: 4.531433), 
[3520 iters] min =   5.67ms max =   5.76ms median =   5.68ms mean =   5.68ms
Creating tflite runtime interpreter: LeViT_128
(index: 985,  score: 10.408299), (index: 113,  score: 3.053058), (index: 322,  score: 2.965649), 
[2553 iters] min =   7.82ms max =   7.96ms median =   7.83ms mean =   7.83ms
Creating tflite runtime interpreter: LeViT_192
(index: 985,  score: 11.518022), (index: 326,  score: 3.538946), (index: 949,  score: 3.330873), 
[1892 iters] min =  10.56ms max =  10.61ms median =  10.57ms mean =  10.57ms
Creating tflite runtime interpreter: LeViT_256
(index: 985,  score: 11.887807), (index: 309,  score: 3.870812), (index: 310,  score: 3.431441), 
[1258 iters] min =  15.87ms max =  16.00ms median =  15.91ms mean =  15.91ms
Creating tflite runtime interpreter: resnet50
(index: 985,  score: 7.246205), (index: 310,  score: -4.826327), (index: 113,  score: -4.926934), 
[585 iters] min =  34.17ms max =  34.26ms median =  34.20ms mean =  34.20ms
Creating tflite runtime interpreter: mobilenetv3_large_100
(index: 985,  score: 9.637251), (index: 308,  score: 2.416982), (index: 310,  score: 2.384904), 
[2507 iters] min =   7.94ms max =   8.05ms median =   7.98ms mean =   7.98ms
Creating tflite runtime interpreter: tf_efficientnetv2_b0
(index: 985,  score: 9.417022), (index: 309,  score: 2.254775), (index: 108,  score: 2.241267), 
[1336 iters] min =  14.96ms max =  15.07ms median =  14.98ms mean =  14.98ms
Creating tflite runtime interpreter: tf_efficientnetv2_b1
(index: 985,  score: 9.583678), (index: 309,  score: 2.332392), (index: 861,  score: 2.236440), 
[866 iters] min =  23.07ms max =  23.24ms median =  23.09ms mean =  23.10ms
Creating tflite runtime interpreter: tf_efficientnetv2_b2
(index: 985,  score: 9.962457), (index: 883,  score: 2.418920), (index: 108,  score: 2.157927), 
[633 iters] min =  31.59ms max =  31.72ms median =  31.62ms mean =  31.62ms
Creating tflite runtime interpreter: tf_efficientnetv2_b3
(index: 985,  score: 8.798715), (index: 955,  score: 2.787326), (index: 310,  score: 2.172835), 
[393 iters] min =  50.96ms max =  51.11ms median =  51.00ms mean =  51.00ms

pytorch

M1 firestorm @ 1 thread @ 3.0GHz trace w/ onednn+acl by gcc-10
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf 
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767033), (index: 644,  score: 4.848289), (index: 108,  score: 3.925720), 
[259 iters] min =  77.08ms max =  77.55ms median =  77.28ms mean =  77.27ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112442), (index: 89,  score: 4.162664), (index: 984,  score: 4.077511), 
[173 iters] min = 115.70ms max = 116.05ms median = 115.90ms mean = 115.89ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485486), (index: 22,  score: 3.693231), (index: 309,  score: 3.692009), 
[110 iters] min = 183.21ms max = 183.87ms median = 183.44ms mean = 183.44ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001728), (index: 310,  score: 4.622917), 
[302 iters] min =  66.11ms max =  66.60ms median =  66.36ms mean =  66.35ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528474), (index: 89,  score: 4.334189), (index: 720,  score: 4.178121), 
[225 iters] min =  88.79ms max =  89.29ms median =  89.03ms mean =  89.03ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233633), (index: 309,  score: 3.921279), (index: 310,  score: 3.807570), 
[159 iters] min = 126.16ms max = 126.72ms median = 126.44ms mean = 126.42ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011185), (index: 309,  score: 4.270287), (index: 310,  score: 3.913450), 
[425 iters] min =  47.01ms max =  47.21ms median =  47.07ms mean =  47.08ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367957), (index: 309,  score: 3.259868), (index: 308,  score: 3.008149), 
[295 iters] min =  67.80ms max =  67.97ms median =  67.87ms mean =  67.88ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141463), (index: 883,  score: 2.990551), (index: 308,  score: 2.454388), 
[184 iters] min = 109.11ms max = 109.46ms median = 109.28ms mean = 109.27ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396775), (index: 883,  score: 2.240934), (index: 309,  score: 2.083860), 
[171 iters] min = 117.01ms max = 117.29ms median = 117.16ms mean = 117.16ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885459), (index: 309,  score: 4.954109), (index: 310,  score: 4.638605), 
[457 iters] min =  43.71ms max =  44.01ms median =  43.83ms mean =  43.84ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799909), (index: 309,  score: 4.595184), (index: 308,  score: 3.817010), 
[237 iters] min =  84.26ms max =  84.90ms median =  84.58ms mean =  84.58ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156299), (index: 309,  score: 4.532576), (index: 308,  score: 4.049803), 
[143 iters] min = 139.58ms max = 140.45ms median = 139.87ms mean = 139.90ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[508 iters] min =  39.31ms max =  39.51ms median =  39.43ms mean =  39.42ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129788), (index: 309,  score: 2.389378), (index: 308,  score: 1.880310), 
[301 iters] min =  65.51ms max =  67.36ms median =  66.55ms mean =  66.51ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256273), (index: 557,  score: 2.220434), (index: 309,  score: 1.944912), 
[206 iters] min =  96.50ms max =  98.96ms median =  96.79ms mean =  97.34ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281982), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[148 iters] min = 134.15ms max = 137.07ms median = 135.35ms mean = 135.51ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098927), (index: 308,  score: 2.259606), (index: 301,  score: 2.159039), 
[113 iters] min = 176.65ms max = 179.01ms median = 177.60ms mean = 177.64ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888678), (index: 494,  score: 2.104781), (index: 309,  score: 1.869408), 
[90 iters] min = 221.84ms max = 225.91ms median = 224.27ms mean = 224.02ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531363), (index: 883,  score: 2.248764), (index: 309,  score: 2.237853), 
[73 iters] min = 274.54ms max = 278.95ms median = 277.25ms mean = 277.15ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652477), (index: 309,  score: 6.357602), (index: 308,  score: 6.236127), 
[483 iters] min =  41.33ms max =  41.56ms median =  41.42ms mean =  41.43ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998842), (index: 89,  score: 6.411968), (index: 308,  score: 5.775460), 
[223 iters] min =  89.92ms max =  90.22ms median =  90.07ms mean =  90.07ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661425), (index: 838,  score: 4.319453), (index: 309,  score: 4.076357), 
[158 iters] min = 126.86ms max = 127.35ms median = 127.02ms mean = 127.04ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427817), (index: 308,  score: 3.451130), (index: 309,  score: 3.319760), 
[1202 iters] min =  16.61ms max =  16.70ms median =  16.65ms mean =  16.65ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089767), (index: 309,  score: 3.409031), (index: 113,  score: 3.385418), 
[931 iters] min =  21.43ms max =  21.57ms median =  21.50ms mean =  21.50ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186359), (index: 644,  score: 3.177923), 
[732 iters] min =  27.24ms max =  27.43ms median =  27.33ms mean =  27.33ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363824), (index: 108,  score: 3.341188), (index: 310,  score: 2.929487), 
[430 iters] min =  46.43ms max =  46.67ms median =  46.52ms mean =  46.53ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495995), (index: 113,  score: -4.947914), (index: 310,  score: -5.267949), 
[104 iters] min = 192.32ms max = 195.93ms median = 193.38ms mean = 193.51ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592707), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[688 iters] min =  28.99ms max =  29.14ms median =  29.07ms mean =  29.07ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378345), (index: 108,  score: 2.289131), 
[423 iters] min =  47.25ms max =  47.45ms median =  47.35ms mean =  47.35ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484587), (index: 861,  score: 2.258526), (index: 309,  score: 2.134490), 
[286 iters] min =  69.83ms max =  70.18ms median =  70.02ms mean =  70.02ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518669), (index: 113,  score: 2.046141), 
[208 iters] min =  96.39ms max =  96.84ms median =  96.57ms mean =  96.57ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089396), (index: 955,  score: 2.892824), (index: 947,  score: 2.188146), 
[127 iters] min = 158.14ms max = 158.71ms median = 158.47ms mean = 158.46ms
M1 firestorm @ 1 thread @ 3.0GHz mobile w/ onednn+acl by gcc-10
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf
LD_LIBRARY_PATH=/home/loongson/zhouyingkun/torch-acl/lib:/home/loongson/zhouyingkun/arm_compute-v23.05-bin-linux-arm64-v8.2-a-neon/lib/arm64-v8.2-a-neon:/home/loongson/zhouyingkun/opencv/lib bin/torch-perf --only-test ALL --backend c
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767030), (index: 644,  score: 4.848297), (index: 108,  score: 3.925721), 
[318 iters] min =  62.79ms max =  63.43ms median =  63.00ms mean =  63.01ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112427), (index: 89,  score: 4.162661), (index: 984,  score: 4.077535), 
[215 iters] min =  93.15ms max =  93.60ms median =  93.37ms mean =  93.38ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485474), (index: 22,  score: 3.693241), (index: 309,  score: 3.691998), 
[134 iters] min = 149.02ms max = 149.66ms median = 149.33ms mean = 149.33ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914167), (index: 883,  score: 5.001735), (index: 310,  score: 4.622921), 
[314 iters] min =  63.39ms max =  64.18ms median =  63.71ms mean =  63.71ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528477), (index: 89,  score: 4.334185), (index: 720,  score: 4.178122), 
[232 iters] min =  86.12ms max =  86.98ms median =  86.42ms mean =  86.43ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233639), (index: 309,  score: 3.921288), (index: 310,  score: 3.807554), 
[163 iters] min = 122.60ms max = 123.64ms median = 123.05ms mean = 123.04ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885463), (index: 309,  score: 4.954110), (index: 310,  score: 4.638607), 
[550 iters] min =  36.29ms max =  36.70ms median =  36.40ms mean =  36.41ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595183), (index: 308,  score: 3.817009), 
[279 iters] min =  71.45ms max =  72.34ms median =  71.85ms mean =  71.83ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156300), (index: 309,  score: 4.532576), (index: 308,  score: 4.049804), 
[162 iters] min = 123.72ms max = 124.86ms median = 124.17ms mean = 124.19ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[1506 iters] min =  13.26ms max =  13.32ms median =  13.29ms mean =  13.29ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[1105 iters] min =  18.08ms max =  18.14ms median =  18.10ms mean =  18.10ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[818 iters] min =  24.44ms max =  24.51ms median =  24.47ms mean =  24.47ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[496 iters] min =  40.30ms max =  40.44ms median =  40.34ms mean =  40.34ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592701), (index: 308,  score: 2.354276), (index: 310,  score: 2.337050), 
[1434 iters] min =  13.93ms max =  14.01ms median =  13.95ms mean =  13.96ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554751), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[561 iters] min =  35.64ms max =  35.81ms median =  35.68ms mean =  35.69ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134489), 
[351 iters] min =  56.97ms max =  57.12ms median =  57.01ms mean =  57.02ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[256 iters] min =  78.21ms max =  78.52ms median =  78.35ms mean =  78.35ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[151 iters] min = 132.57ms max = 132.95ms median = 132.72ms mean = 132.74ms
M1 firestorm @ 1 thread @ 3.0GHz trace w/ openblas by clang-14
$ OMP_NUM_THREADS=1 MODEL=ALL make run-torch-perf
LD_LIBRARY_PATH=/home/loongson/zhouyingkun/torch-blas/lib:/home/loongson/zhouyingkun/arm_compute-v23.05-bin-linux-arm64-v8.2-a-neon/lib/arm64-v8.2-a-neon:/home/loongson/zhouyingkun/opencv/lib bin/torch-perf --only-test ALL --backend z
INFO: Using num_threads == 1
INFO: Using trace CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767040), (index: 644,  score: 4.848290), (index: 108,  score: 3.925722), 
[373 iters] min =  53.55ms max =  53.76ms median =  53.66ms mean =  53.66ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112445), (index: 89,  score: 4.162668), (index: 984,  score: 4.077518), 
[251 iters] min =  79.68ms max =  80.01ms median =  79.82ms mean =  79.82ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485485), (index: 22,  score: 3.693229), (index: 309,  score: 3.692007), 
[149 iters] min = 134.05ms max = 134.67ms median = 134.44ms mean = 134.43ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001730), (index: 310,  score: 4.622921), 
[595 iters] min =  33.56ms max =  33.75ms median =  33.66ms mean =  33.66ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334196), (index: 720,  score: 4.178128), 
[407 iters] min =  49.04ms max =  49.31ms median =  49.16ms mean =  49.16ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233629), (index: 309,  score: 3.921285), (index: 310,  score: 3.807566), 
[274 iters] min =  73.17ms max =  73.37ms median =  73.25ms mean =  73.25ms
Creating pytorch module: EMO_1M
(index: 985,  score: 10.011185), (index: 309,  score: 4.270289), (index: 310,  score: 3.913450), 
[502 iters] min =  39.80ms max =  39.98ms median =  39.87ms mean =  39.87ms
Creating pytorch module: EMO_2M
(index: 985,  score: 9.367955), (index: 309,  score: 3.259869), (index: 308,  score: 3.008149), 
[357 iters] min =  55.98ms max =  56.23ms median =  56.10ms mean =  56.11ms
Creating pytorch module: EMO_5M
(index: 985,  score: 9.141462), (index: 883,  score: 2.990552), (index: 308,  score: 2.454388), 
[220 iters] min =  90.94ms max =  91.38ms median =  91.17ms mean =  91.17ms
Creating pytorch module: EMO_6M
(index: 985,  score: 9.396772), (index: 883,  score: 2.240934), (index: 309,  score: 2.083858), 
[206 iters] min =  97.36ms max =  97.70ms median =  97.51ms mean =  97.52ms
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885461), (index: 309,  score: 4.954110), (index: 310,  score: 4.638609), 
[978 iters] min =  20.38ms max =  20.56ms median =  20.45ms mean =  20.46ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799911), (index: 309,  score: 4.595184), (index: 308,  score: 3.817010), 
[526 iters] min =  37.99ms max =  38.21ms median =  38.08ms mean =  38.08ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156297), (index: 309,  score: 4.532577), (index: 308,  score: 4.049804), 
[294 iters] min =  67.89ms max =  68.23ms median =  68.04ms mean =  68.05ms
Creating pytorch module: mobilevitv2_050
(index: 985,  score: 8.315772), (index: 309,  score: 2.612400), (index: 584,  score: 2.352643), 
[556 iters] min =  35.92ms max =  36.20ms median =  36.02ms mean =  36.03ms
Creating pytorch module: mobilevitv2_075
(index: 985,  score: 8.129786), (index: 309,  score: 2.389378), (index: 308,  score: 1.880310), 
[325 iters] min =  60.64ms max =  62.37ms median =  61.57ms mean =  61.58ms
Creating pytorch module: mobilevitv2_100
(index: 985,  score: 8.256277), (index: 557,  score: 2.220437), (index: 309,  score: 1.944912), 
[219 iters] min =  90.74ms max =  92.47ms median =  91.54ms mean =  91.52ms
Creating pytorch module: mobilevitv2_125
(index: 985,  score: 8.281981), (index: 309,  score: 1.962245), (index: 883,  score: 1.285464), 
[159 iters] min = 124.66ms max = 126.84ms median = 125.97ms mean = 125.90ms
Creating pytorch module: mobilevitv2_150
(index: 985,  score: 9.098921), (index: 308,  score: 2.259605), (index: 301,  score: 2.159040), 
[121 iters] min = 165.11ms max = 167.51ms median = 166.24ms mean = 166.25ms
Creating pytorch module: mobilevitv2_175
(index: 985,  score: 8.888677), (index: 494,  score: 2.104781), (index: 309,  score: 1.869408), 
[95 iters] min = 210.20ms max = 212.14ms median = 210.85ms mean = 210.88ms
Creating pytorch module: mobilevitv2_200
(index: 985,  score: 8.531368), (index: 883,  score: 2.248762), (index: 309,  score: 2.237853), 
[77 iters] min = 260.56ms max = 263.32ms median = 261.57ms mean = 261.82ms
Creating pytorch module: mobilevit_xx_small
(index: 985,  score: 12.652476), (index: 309,  score: 6.357601), (index: 308,  score: 6.236126), 
[605 iters] min =  33.04ms max =  33.18ms median =  33.10ms mean =  33.11ms
Creating pytorch module: mobilevit_x_small
(index: 985,  score: 12.998842), (index: 89,  score: 6.411971), (index: 308,  score: 5.775463), 
[265 iters] min =  75.29ms max =  75.85ms median =  75.54ms mean =  75.54ms
Creating pytorch module: mobilevit_small
(index: 985,  score: 10.661433), (index: 838,  score: 4.319451), (index: 309,  score: 4.076356), 
[186 iters] min = 107.39ms max = 108.08ms median = 107.73ms mean = 107.72ms
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427824), (index: 308,  score: 3.451133), (index: 309,  score: 3.319760), 
[1516 iters] min =  13.15ms max =  13.23ms median =  13.19ms mean =  13.19ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089764), (index: 309,  score: 3.409033), (index: 113,  score: 3.385417), 
[1160 iters] min =  17.17ms max =  17.29ms median =  17.25ms mean =  17.25ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594853), (index: 308,  score: 3.186353), (index: 644,  score: 3.177923), 
[847 iters] min =  23.58ms max =  23.70ms median =  23.63ms mean =  23.63ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363823), (index: 108,  score: 3.341187), (index: 310,  score: 2.929486), 
[536 iters] min =  37.32ms max =  37.42ms median =  37.36ms mean =  37.36ms
Creating pytorch module: resnet50
(index: 985,  score: 7.495990), (index: 113,  score: -4.947911), (index: 310,  score: -5.267944), 
[166 iters] min = 120.54ms max = 120.68ms median = 120.61ms mean = 120.61ms
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592709), (index: 308,  score: 2.354278), (index: 310,  score: 2.337051), 
[679 iters] min =  29.27ms max =  29.59ms median =  29.47ms mean =  29.47ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554757), (index: 309,  score: 2.378345), (index: 108,  score: 2.289133), 
[353 iters] min =  56.67ms max =  56.87ms median =  56.75ms mean =  56.75ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484580), (index: 861,  score: 2.258524), (index: 309,  score: 2.134490), 
[256 iters] min =  78.20ms max =  78.54ms median =  78.37ms mean =  78.37ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816823), (index: 883,  score: 2.518671), (index: 113,  score: 2.046143), 
[192 iters] min = 104.40ms max = 104.70ms median = 104.52ms mean = 104.53ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089397), (index: 955,  score: 2.892823), (index: 947,  score: 2.188145), 
[122 iters] min = 163.84ms max = 164.21ms median = 164.07ms mean = 164.07ms
M1 firestorm @ 1 thread @ 3.0GHz mobile w/ openblas by clang-14
$ OMP_NUM_THREADS=1 BACK=c MODEL=ALL make run-torch-perf
INFO: Using num_threads == 1
INFO: Using mobile CPU backend
Creating pytorch module: efficientformerv2_s0
(index: 985,  score: 11.767038), (index: 644,  score: 4.848302), (index: 108,  score: 3.925722), 
[692 iters] min =  28.85ms max =  28.99ms median =  28.92ms mean =  28.92ms
Creating pytorch module: efficientformerv2_s1
(index: 985,  score: 13.112428), (index: 89,  score: 4.162664), (index: 984,  score: 4.077536), 
[454 iters] min =  44.00ms max =  44.18ms median =  44.10ms mean =  44.10ms
Creating pytorch module: efficientformerv2_s2
(index: 985,  score: 12.485475), (index: 22,  score: 3.693243), (index: 309,  score: 3.691999), 
[266 iters] min =  75.14ms max =  75.39ms median =  75.27ms mean =  75.27ms
Creating pytorch module: SwiftFormer_XS
(index: 985,  score: 11.914165), (index: 883,  score: 5.001738), (index: 310,  score: 4.622924), 
[610 iters] min =  32.76ms max =  32.92ms median =  32.84ms mean =  32.84ms
Creating pytorch module: SwiftFormer_S
(index: 985,  score: 12.528475), (index: 89,  score: 4.334188), (index: 720,  score: 4.178121), 
[421 iters] min =  47.51ms max =  47.65ms median =  47.59ms mean =  47.58ms
Creating pytorch module: SwiftFormer_L1
(index: 985,  score: 13.233637), (index: 309,  score: 3.921288), (index: 310,  score: 3.807558), 
[279 iters] min =  71.72ms max =  71.89ms median =  71.81ms mean =  71.81ms
EMO_1M model doesn't exist!!!
EMO_2M model doesn't exist!!!
EMO_5M model doesn't exist!!!
EMO_6M model doesn't exist!!!
Creating pytorch module: edgenext_xx_small
(index: 985,  score: 10.885464), (index: 309,  score: 4.954108), (index: 310,  score: 4.638605), 
[1085 iters] min =  18.39ms max =  18.55ms median =  18.44ms mean =  18.44ms
Creating pytorch module: edgenext_x_small
(index: 985,  score: 9.799910), (index: 309,  score: 4.595186), (index: 308,  score: 3.817011), 
[569 iters] min =  35.15ms max =  35.25ms median =  35.20ms mean =  35.20ms
Creating pytorch module: edgenext_small
(index: 985,  score: 12.156299), (index: 309,  score: 4.532575), (index: 308,  score: 4.049802), 
[299 iters] min =  66.89ms max =  66.99ms median =  66.94ms mean =  66.94ms
mobilevitv2_050 model doesn't exist!!!
mobilevitv2_075 model doesn't exist!!!
mobilevitv2_100 model doesn't exist!!!
mobilevitv2_125 model doesn't exist!!!
mobilevitv2_150 model doesn't exist!!!
mobilevitv2_175 model doesn't exist!!!
mobilevitv2_200 model doesn't exist!!!
mobilevit_xx_small model doesn't exist!!!
mobilevit_x_small model doesn't exist!!!
mobilevit_small model doesn't exist!!!
Creating pytorch module: LeViT_128S
(index: 985,  score: 11.427816), (index: 308,  score: 3.451128), (index: 309,  score: 3.319762), 
[1678 iters] min =  11.90ms max =  11.96ms median =  11.92ms mean =  11.92ms
Creating pytorch module: LeViT_128
(index: 985,  score: 11.089766), (index: 309,  score: 3.409033), (index: 113,  score: 3.385415), 
[1244 iters] min =  16.07ms max =  16.12ms median =  16.09ms mean =  16.09ms
Creating pytorch module: LeViT_192
(index: 985,  score: 11.594851), (index: 308,  score: 3.186354), (index: 644,  score: 3.177923), 
[862 iters] min =  23.21ms max =  23.26ms median =  23.23ms mean =  23.23ms
Creating pytorch module: LeViT_256
(index: 985,  score: 11.363821), (index: 108,  score: 3.341193), (index: 310,  score: 2.929493), 
[518 iters] min =  38.59ms max =  38.67ms median =  38.63ms mean =  38.63ms
resnet50 model doesn't exist!!!
Creating pytorch module: mobilenetv3_large_100
(index: 985,  score: 9.592703), (index: 308,  score: 2.354278), (index: 310,  score: 2.337049), 
[1436 iters] min =  13.88ms max =  13.99ms median =  13.93ms mean =  13.93ms
Creating pytorch module: tf_efficientnetv2_b0
(index: 985,  score: 9.554752), (index: 309,  score: 2.378344), (index: 108,  score: 2.289130), 
[558 iters] min =  35.81ms max =  35.88ms median =  35.85ms mean =  35.85ms
Creating pytorch module: tf_efficientnetv2_b1
(index: 985,  score: 9.484585), (index: 861,  score: 2.258525), (index: 309,  score: 2.134490), 
[350 iters] min =  57.14ms max =  57.26ms median =  57.19ms mean =  57.18ms
Creating pytorch module: tf_efficientnetv2_b2
(index: 985,  score: 9.816826), (index: 883,  score: 2.518668), (index: 113,  score: 2.046140), 
[255 iters] min =  78.57ms max =  78.74ms median =  78.64ms mean =  78.65ms
Creating pytorch module: tf_efficientnetv2_b3
(index: 985,  score: 9.089395), (index: 955,  score: 2.892825), (index: 947,  score: 2.188146), 
[150 iters] min = 133.25ms max = 133.53ms median = 133.40ms mean = 133.39ms
⚠️ **GitHub.com Fallback** ⚠️