apple coreml - YingkunZhou/EdgeTransformerBench GitHub Wiki

apple Neural Engine

image
  • M1 (8-core GPU)
  • M1 max (32-core GPU)
  • M2 (8-core GPU)

Converting Deep Learning Models

  • torch==2.2.0
  • coremltools==7.1
  • compute: Mixed (FLoat16, Float32, Int32)
  • Storage: Float16
  • OS: macOS 14.1

注意:笔记本电脑测试的时候要接电源!

Model M1 Mapping(C/G/N)
M2 Mapping(C/G/N)
ALL
mini/MAX
GPU
mini/MAX
CPU #params GMACs
efficientformerv2_s0 4/0/213
0/0/217
0.73/0.68
0.51
4.44/4.69
4.08
50.15
48.27
3.5M 0.40G
efficientformerv2_s1 4/0/255
0/0/259
0.86/0.81
0.62
4.43/4.36
5.04
73.93
71.37
6.1M 0.65G
efficientformerv2_s2 4/0/389
0/0/393
1.26/1.25
0.94
5.92/4.60
6.40
112.40
108.27
12.6M 1.25G
SwiftFormer_XS 4/0/246
0/0/250
0.81/0.76
0.63
4.22/4.52
5.21
50.95
48.93
3.5M 0.4G
SwiftFormer_S 4/0/271
0/0/275
0.95/0.88
0.73
5.25/4.18
5.00
62.24
59.70
6.1M 1.0G
SwiftFormer_L1 4/0/276
0/0/280
1.21/1.18
0.98
6.20/4.42
5.60
81.57
78.08
12.1M 1.6G
EMO_1M 4/0/346
0/0/350
2.47/3.93
2.70
4.12/4.43
6.43
20.38
19.92
1.3M 0.26G
EMO_2M 4/0/394
0/0/398
3.70/5.69
4.29
4.79/4.27
7.20
28.61
27.65
2.3M 0.44G
EMO_5M 4/0/394
0/0/398
6.51/6.93
7.80
6.07/4.46
7.46
44.52
42.90
5.1M 0.90G
EMO_6M 4/0/394
0/0/398
6.81/7.59
8.02
6.25/4.49
7.43
47.13
46.13
6.1M 0.96G
edgenext_xx_small 2/163/110
0/167/108
4.28/5.94
4.69
3.66/4.27
5.49
44.31
43.09
1.3M 0.26G
edgenext_x_small 2/199/128
0/203/126
5.30/8.24
6.81
4.47/4.64
6.45
72.47
69.26
2.3M 0.54G
edgenext_small/usi 2/267/60
0/199/130
6.91/9.56
9.11
4.63/4.45
7.41
118.40
112.80
5.6M 1.26G
mobilevitv2_050 4/0/396
0/0/400
0.84/0.80
0.64
4.18/4.23
4.87
19.07
18.13
1.4M 0.5G
mobilevitv2_075 4/0/396
0/0/400
1.15/1.13
0.93
4.88/4.26
5.75
28.20
26.97
2.9M 1.0G
mobilevitv2_100 4/0/396
0/0/400
1.64/1.64
1.32
5.99/4.29
6.38
37.84
36.05
4.9M 1.8G
mobilevitv2_125 4/0/396
0/0/400
1.98/2.04
1.62
8.73/4.34
7.66
48.27
45.56
7.5M 2.8G
mobilevitv2_150 4/0/396
0/0/400
2.43/2.50
2.06
10.33/4.93
9.13
58.72
56.20
10.6M 4.0G
mobilevitv2_175 4/0/396
0/0/400
2.88/2.96
2.46
13.52/5.71
11.88
70.38
65.23
14.3M 5.5G
mobilevitv2_200 4/0/396
0/0/400
3.34/3.46
2.88
14.84/6.22
13.00
81.28
76.22
18.4M 7.2G
mobilevit_xx_small 4/0/381
0/0/385
1.44/1.51
1.30
4.23/4.35
5.74
15.54
15.07
1.3M 0.36G
mobilevit_x_small 4/0/380
0/0/384
2.04/2.34
1.79
6.04/4.28
7.19
28.73
28.20
2.3M 0.89G
mobilevit_small 4/0/380
0/0/384
2.74/3.05
2.48
7.62/4.79
7.36
35.77
34.71
5.6M 2.0 G
LeViT_128S 2/266/30
0/273/25
3.83/5.63
5.32
3.37/4.08
3.68
6.15
5.86
7.8M 0.30G
LeViT_128 2/338/30
0/345/25
4.65/6.76
6.46
4.16/4.13
3.64
7.44
7.25
9.2M 0.41G
LeViT_192 2/339/29
0/337/33
5.48/7.58
7.39
4.16/4.19
4.61
8.90
8.82
11 M 0.66G
LeViT_256 2/236/132
0/235/135
4.85/8.39
6.72
4.13/4.30
6.70
13.62
13.25
19 M 1.12G
resnet50 4/0/122
0/0/126
1.67/1.67
1.33
8.32/3.92
6.83
12.83
12.11
25.6M 4.1G
mobilenetv3_large_100 4/0/182
0/0/186
0.59/0.53
0.41
4.49/2.01
5.06
5.90
4.49
5.5M 0.29G
tf_efficientnetv2_b0 4/0/217
0/0/221
0.69/0.65
0.51
4.62/4.32
6.35
11.40
10.64
7.1M 0.72G
tf_efficientnetv2_b1 4/0/264
0/0/268
0.83/0.79
0.63
5.10/4.38
7.15
14.23
14.42
8.1M 1.2G
tf_efficientnetv2_b2 4/0/276
0/0/280
1.34/1.25
0.88
7.27/4.56
7.25
20.08
19.81
10.1M 1.7G
tf_efficientnetv2_b3 4/0/324
0/0/328
1.82/1.72
1.22
11.33/6.08
10.13
32.04
31.65
14.4M 3.0G
⚠️ **GitHub.com Fallback** ⚠️