5.5SymmetricTree - WisperDin/blog GitHub Wiki
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1
/ \
2 2
/ \ / \
3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1
/ \
2 2
\ \
3 3
Note: Bonus points if you could solve it both recursively and iteratively.
我一开始犯了一个比较蠢的错误,就是想用中序表达式是否回文来判断,但后面提交出错后猛然回想起了数据结构老师说过的一句话,仅凭着 前序/中序/后序 表达式 的其中一个表达式是无法确定一个二叉树的
要判定一棵二叉树是否以中线对称,可以通过一直往下比较子树的方法,即一棵二叉树的左子树如果和右子树为镜像对称,则称该二叉树对称
A,B 镜像对称:A ,B的根节点的值一样,A的左子树和B的右子树镜像对称,A的右子树和B的左子树镜像对称
递归实现:
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (!root)
return true;
return isMirror(root->left,root->right);
}
private: bool isMirror(TreeNode* left,TreeNode* right){
if (!left && !right)
return true;
if (!left || !right)
return false;
if (left->val != right->val)
return false;
if (!isMirror(left->left,right->right))
return false;
if (!isMirror(left->right,right->left))
return false;
return true;
}
};
迭代实现:
class Solution {
public:
bool isSymmetric(TreeNode* root) {
queue<TreeNode*> q;
q.push(root);
q.push(root);
while(!q.empty()){
TreeNode* t1 = q.front();
q.pop();
TreeNode* t2 = q.front();
q.pop();
if (!t1 && !t2) continue;
if (!t1 || !t2) return false;
if (t1->val != t2->val) return false;
q.push(t1->left);
q.push(t2->right);
q.push(t1->right);
q.push(t2->left);
}
return true;
}
};