Lesson3_2(FrogJmp) - WhyAbout/CodilityAlgorithm GitHub Wiki

#Task

A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.

Count the minimal number of jumps that the small frog must perform to reach its target.

Write a function:

int solution(int X, int Y, int D);

that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.

For example, given:

  X = 10
  Y = 85
  D = 30
the function should return 3, because the frog will be positioned as follows:

after the first jump, at position 10 + 30 = 40
after the second jump, at position 10 + 30 + 30 = 70
after the third jump, at position 10 + 30 + 30 + 30 = 100
Assume that:

X, Y and D are integers within the range [1..1,000,000,000];
X ≤ Y.
Complexity:

expected worst-case time complexity is O(1);
expected worst-case space complexity is O(1).

#Solution

int solution(int X, int Y, int D) {
    // write your code in C++14 (g++ 6.2.0)
    int len = Y - X;
    if ( len % D == 0 ) {
        return  len / D;
    }else{
        return len / D + 1;
    }
}