JetsonNano setup - Utagoe-robotics/Wiki GitHub Wiki
Gettig Started With Jetson Nano Developer Kit
You can setup Jetson Nano following the above Getting Started guide.
There are two options for power supply:
- micro USB (5V/2A) (default)
- DC (5V/4A)
Micro USB power supply is a default power supply.
To switch the power supply to DC, shorten these pins with a jumper pin.

sudo sh -c 'echo 255 > /sys/devices/pwm-fan/target_pwm'
Jetson Nano doesn't have any wireless module including WiFi and Bluetooth. You need to prepare WiFi module if you connect to wifi.
You have two options for wifi modules:
- USB dongle
- Intel Dual Band Wireless AC 8265
Jetson Nano supports many common USB wifi adapters. Here we use tp-link Archer T2U as a wifi USB dongle.
How to install tp-link Archer T2U on Ubuntu
To install wifi driver of tp-link Archer T2U, clone this repository and run a shell scpript.
$ sudo apt install dkms
$ git clone https://github.com/aircrack-ng/rtl8812au.git
$ cd rtl8812au
$ sudo make dkms_install
$ sudo reboot
darknet_ros for ROS Melodic needs OpenCV version before 3.4.0. OpenCV 4.X.X is initially installed in Jetson Nano Developer Kit, so you need to replace 4.X.X to 3.4.0(or before). Here we show how to replace OpenCV v4.X.X to v3.4.0 in Jetson Nano.
Check the current OpenCV verions by this command.
pkg-config --modversion opencv
$ git clone https://github.com/jkjung-avt/jetson_nano.git
$ cd jetson_nano
You can see install_opencv-3.4.6.sh
in the directory.
Copy the file and rename it to install_opencv-3.4.0.sh
.
$ cp install_opencv-3.4.6.sh install_opencv-3.4.0.sh
You have to replace all 3.4.6
to 3.4.0
in install_opencv-3.4.0.sh
.
Then, run the installation script after enhancing Jetson Nano.
$ sudo nvpmodel -m 0
$ sudo jetson_clocks
$ chmod +x install_opencv-3.4.0.sh
$ sudo ./install_opencv-3.4.0.sh
$ sudo ln -s /usr/local/include/opencv /usr/include/opencv
$ sudo ln -s /usr/local/include/opencv2 /usr/include/opencv2
- Create
install_opencv_3.4.0.sh
and copy and paste following script to it. - Then, run this script.
$ sudo chmod +x install_opencv_3.4.0.sh
$ sudo ./install_opencv_3.4.0.sh
- Link to
/usr/include
:sudo ln -s /usr/local/include/opencv /usr/include/opencv
sudo ln -s /usr/local/include/opencv2 /usr/include/opencv2
- Remove OpenCV 4.X.X packages.
sudo rm -rf /usr/include/opencv4
sudo rm -rf /usr/local/lib/cmake/opencv4
https://github.com/leggedrobotics/darknet_ros
$ sudo apt install ros-melodic-cv-bridge
$ sudo apt install ros-melodic-uvc-camera
Firstly, you have to
【物体検出】vol.2 :YOLOv3をNVIDIA Jetson Nanoで動かす
First, clone the repository and download weights.
# Clone the repository
$ git clone https://github.com/AlexeyAB/darknet
$ cd darknet
# Download weights
$ wget https://pjreddie.com/media/files/yolov3.weights
$ wget https://pjreddie.com/media/files/yolov3-tiny.weights
Modify Makefile to enable GPU, CUDA and OpenCV. Set the value:
GPU=1
CUDNN=1
OPENCV=1
Activate Tegra X1 (GPU of Jetson Nano) by uncommenting:
ARCH= -gencode arch=compute_30,code=sm_30 \
-gencode arch=compute_35,code=sm_35 \
-gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52] \
# -gencode arch=compute_61,code=[sm_61,compute_61]
# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
$ export PATH=/usr/local/cuda/bin:${PATH}
$ export LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH}
$ make
$ ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -c 0
$ nvgstcapture $ ./darknet detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights "'nvarguscamerasrc ! video/x-raw(memory:NVMM), width=1920, height=1080, format=(string)NV12, framerate=(fraction)30/1 ! nvtee ! nvvidconv flip-method=2 ! video/x-raw, width=(int)1280, height=(int)720, format=(string)BGRx ! videoconvert ! appsink'"
The JetPack 4.4 production release (L4T R32.4.3) only supports PyTorch 1.6.0 or newer, due to updates in cuDNN.
$ wget https://nvidia.box.com/shared/static/9eptse6jyly1ggt9axbja2yrmj6pbarc.whl -O torch-1.6.0-cp36-cp36m-linux_aarch64.whl
$ sudo apt-get install python3-pip libopenblas-base libopenmpi-dev
$ pip3 install Cython
$ pip3 install numpy torch-1.6.0-cp36-cp36m-linux_aarch64.whl
$ sudo apt-get install libjpeg-dev zlib1g-dev
$ git clone --branch <version> https://github.com/pytorch/vision torchvision # see below for version of torchvision to download
$ cd torchvision
$ sudo python setup.py install # use python3 if installing for Python 3.6
$ cd ../ # attempting to load torchvision from build dir will result in import error
$ pip install 'pillow<7' # always needed for Python 2.7, not needed torchvision v0.5.0+ with Python 3.6