Training German Handwriting - UB-Mannheim/kraken GitHub Wiki
Training of kraken model for German handwriting
german_handwriting
is a model which was trained for the recognition of handwritten (German) texts.
The first training used 4 ground truth data sets. A 2nd training added another data set, and the 3rd training added one more again. All three trainings were based on the model digitue_best, a kraken model for printed text.
The latest model file german_handwriting.mlmodel for Kraken OCR is available from Zenodo: Weil, S. (2023). HTR model for German manuscripts trained from several datasets. Zenodo. https://doi.org/10.5281/zenodo.7933463
Data from all training processes including intermediate results can be found at https://ub-backup.bib.uni-mannheim.de/~stweil/tesstrain/kraken/german_handwriting/.
Ground Truth
1st Training
Konsilien 1659-1665. TΓΌbingen. http://doi.org/10.20345/digitue.23865
Tobias GrΓΌning, Gundram Leifert, Johannes Michael, Tobias StrauΓ, Max Weidemann, Roger Labahn. (2016). read_dataset_german_konzilsprotokolle [Data set]. Zenodo. http://doi.org/10.5281/zenodo.215383
SΓ‘nchez, Joan Andreu, Romero, VerΓ³nica, Toselli, Alejandro H., & Vidal, Enrique. (2016). READ dataset Bozen [Data set]. Zenodo. https://doi.org/10.5281/zenodo.218236
Hodel, Tobias, Schoch, David, & DΓ€ngeli, Peter. (2021). Handwritten Text Recognition Ground Truth Set: StABS RatsbΓΌcher O10, Urfehdenbuch X (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5153263
2nd Training
Like 1st training plus
https://github.com/ubtue/Ground-Truth/
3rd Training
Like 2nd training plus data exported from Transkribus
Kurrentschrift from the validation set of Staatsarchiv ZΓΌrich RegierungsratsbeschlΓΌsse (HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX)
Preparing data for training
wget -m https://zenodo.org/record/215383/files/german_konzilsprotokolle.tar.gz
tar xzf zenodo.org/record/215383/files/german_konzilsprotokolle.tar.gz
(
cd gt/215383/...
for dir in Copy_of_*; do (cd $dir; ln -sv page/*.xml .); done
)
wget -m https://zenodo.org/record/218236/files/PublicData.tgz
tar xzf zenodo.org/record/218236/files/PublicData.tgz
wget -m https://zenodo.org/record/5153263/files/StABS_Ratsbuch_O_10.zip
unzip zenodo.org/record/5153263/files/StABS_Ratsbuch_O_10.zip
cd gt/5153263/StABS_Ratsbuch_O_10/page
ln -sv ../*.jpg ../*.png .
for in in *.jpg; do out=$(echo $in|sed s/Rats.*_0*//); mv -v $in $out; done
ls gt/215383/german_konzilsprotokolle/data/Greifswald_Alvermann/Copy_of_*/0*.xml >>list.train
ls gt/218236/PublicData/*/page/*xml >>list.train
ls gt/5153263/StABS_Ratsbuch_O_10/page/*.xml >>list.train
ls digitue/*/*xml >> list.train
shuf < list.train | shuf >list1.train
Training with small dataset (Konzilsprotokolle)
ketos train -d cuda:0 --workers 4 -f xml Handschriften/gt/215383/german_konzilsprotokolle/data/Greifswald_Alvermann/Copy_of_*/0*.xml
about 24 min / epoch
Pretraining with large dataset
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ ketos pretrain -d cuda:0 -f page -t list.shuf.train -o pretrain/german_handwriting
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
ββββββ³βββββββββββββββββββββββββ³βββββββββββββββββββββββββββ³βββββββββ
β β Name β Type β Params β
β‘ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
β 0 β net β MultiParamSequential β 4.0 M β
β 1 β net.C_0 β ActConv2D β 1.3 K β
β 2 β net.Do_1 β Dropout β 0 β
β 3 β net.Mp_2 β MaxPool β 0 β
β 4 β net.C_3 β ActConv2D β 40.0 K β
β 5 β net.Do_4 β Dropout β 0 β
β 6 β net.Mp_5 β MaxPool β 0 β
β 7 β net.C_6 β ActConv2D β 55.4 K β
β 8 β net.Do_7 β Dropout β 0 β
β 9 β net.Mp_8 β MaxPool β 0 β
β 10 β net.C_9 β ActConv2D β 110 K β
β 11 β net.Do_10 β Dropout β 0 β
β 12 β net.S_11 β Reshape β 0 β
β 13 β net.L_12 β TransposedSummarizingRNN β 1.9 M β
β 14 β net.Do_13 β Dropout β 0 β
β 15 β net.L_14 β TransposedSummarizingRNN β 963 K β
β 16 β net.Do_15 β Dropout β 0 β
β 17 β net.L_16 β TransposedSummarizingRNN β 963 K β
β 18 β net.Do_17 β Dropout β 0 β
β 19 β features β MultiParamSequential β 207 K β
β 20 β wav2vec2mask β Wav2Vec2Mask β 388 K β
β 21 β wav2vec2mask.mask_emb β Embedding β 3.8 K β
β 22 β wav2vec2mask.project_q β Linear β 384 K β
β 23 β encoder β MultiParamSequential β 3.8 M β
ββββββ΄βββββββββββββββββββββββββ΄βββββββββββββββββββββββββββ΄βββββββββ
Trainable params: 4.4 M
Non-trainable params: 0
Total params: 4.4 M
Total estimated model params size (MB): 17
Validation Sanity Check ββββββββββββββββββββββββββββββββββββββββ 0/66 -:--:-- 0:00:00
Training with large dataset
ketos train -d cuda:0 -f xml -i /home/stweil/.config/kraken/digitue_best.mlmodel -t list.shuf.train -o 202211261525/german_handwriting --resize add -r 0.0001
WARNING Text line "" is empty after transformations train.py:361
[...]
WARNING Text line "" is empty after transformations train.py:361
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
ββββββ³ββββββββββββ³βββββββββββββββββββββββββββ³βββββββββ³βββββββββββββββββββββββββββ³βββββββββββββββββββββββββββ
β β Name β Type β Params β In sizes β Out sizes β
β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
β 0 β net β MultiParamSequential β 4.1 M β [[1, 1, 120, 400], '?'] β [[1, 279, 1, 50], '?'] β
β 1 β net.C_0 β ActConv2D β 1.3 K β [[1, 1, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 2 β net.Do_1 β Dropout β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 3 β net.Mp_2 β MaxPool β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 60, 200], '?'] β
β 4 β net.C_3 β ActConv2D β 40.0 K β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 5 β net.Do_4 β Dropout β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 6 β net.Mp_5 β MaxPool β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 30, 100], '?'] β
β 7 β net.C_6 β ActConv2D β 55.4 K β [[1, 32, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 8 β net.Do_7 β Dropout β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 9 β net.Mp_8 β MaxPool β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 15, 50], '?'] β
β 10 β net.C_9 β ActConv2D β 110 K β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 11 β net.Do_10 β Dropout β 0 β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 12 β net.S_11 β Reshape β 0 β [[1, 64, 15, 50], '?'] β [[1, 960, 1, 50], '?'] β
β 13 β net.L_12 β TransposedSummarizingRNN β 1.9 M β [[1, 960, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 14 β net.Do_13 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 15 β net.L_14 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 16 β net.Do_15 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 17 β net.L_16 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 18 β net.Do_17 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 19 β net.O_18 β LinSoftmax β 111 K β [[1, 400, 1, 50], '?'] β [[1, 279, 1, 50], '?'] β
ββββββ΄ββββββββββββ΄βββββββββββββββββββββββββββ΄βββββββββ΄βββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββ
Trainable params: 4.1 M
Non-trainable params: 0
Total params: 4.1 M
Total estimated model params size (MB): 16
stage 0/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:30:54 val_accuracy: 0.67250 early_stopping: 0/5 0.67250
stage 1/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:30:29 val_accuracy: 0.77690 early_stopping: 0/5 0.77690
stage 2/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:30:37 val_accuracy: 0.82208 early_stopping: 0/5 0.82208
stage 3/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:31:23 val_accuracy: 0.84496 early_stopping: 0/5 0.84496
stage 4/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:32:29 val_accuracy: 0.86469 early_stopping: 0/5 0.86469
stage 5/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:31:10 val_accuracy: 0.87568 early_stopping: 0/5 0.87568
stage 6/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:31:30 val_accuracy: 0.88534 early_stopping: 0/5 0.88534
stage 7/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:31:01 val_accuracy: 0.89373 early_stopping: 0/5 0.89373
stage 8/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:30:58 val_accuracy: 0.89676 early_stopping: 0/5 0.89676
stage 9/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:27:53 val_accuracy: 0.90261 early_stopping: 0/5 0.90261
stage 10/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:14 val_accuracy: 0.90775 early_stopping: 0/5 0.90775
stage 11/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:10 val_accuracy: 0.90983 early_stopping: 0/5 0.90983
stage 12/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:22 val_accuracy: 0.91347 early_stopping: 0/5 0.91347
stage 13/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:57 val_accuracy: 0.91408 early_stopping: 0/5 0.91408
stage 14/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:11 val_accuracy: 0.91815 early_stopping: 0/5 0.91815
stage 15/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:22:18 val_accuracy: 0.91959 early_stopping: 0/5 0.91959
stage 16/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:47 val_accuracy: 0.92043 early_stopping: 0/5 0.92043
stage 17/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:28 val_accuracy: 0.92369 early_stopping: 0/5 0.92369
stage 18/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:58 val_accuracy: 0.92322 early_stopping: 1/5 0.92369
stage 19/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:21:10 val_accuracy: 0.92586 early_stopping: 0/5 0.92586
stage 20/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:12 val_accuracy: 0.76328 early_stopping: 1/5 0.92586
stage 21/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:32 val_accuracy: 0.92818 early_stopping: 0/5 0.92818
stage 22/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:05 val_accuracy: 0.92855 early_stopping: 0/5 0.92855
stage 23/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:57 val_accuracy: 0.92989 early_stopping: 0/5 0.92989
stage 24/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:08 val_accuracy: 0.93016 early_stopping: 0/5 0.93016
stage 25/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:04 val_accuracy: 0.93197 early_stopping: 0/5 0.93197
stage 26/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:22:27 val_accuracy: 0.93215 early_stopping: 0/5 0.93215
stage 27/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:59 val_accuracy: 0.93361 early_stopping: 0/5 0.93361
stage 28/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:20:37 val_accuracy: 0.93408 early_stopping: 0/5 0.93408
stage 29/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:35 val_accuracy: 0.93470 early_stopping: 0/5 0.93470
stage 30/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:24 val_accuracy: 0.93382 early_stopping: 1/5 0.93470
stage 31/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:22:34 val_accuracy: 0.93630 early_stopping: 0/5 0.93630
stage 32/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:10 val_accuracy: 0.92988 early_stopping: 1/5 0.93630
stage 33/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:50 val_accuracy: 0.93543 early_stopping: 2/5 0.93630
stage 34/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:06 val_accuracy: 0.81099 early_stopping: 3/5 0.93630
stage 35/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:22:24 val_accuracy: 0.93757 early_stopping: 0/5 0.93757
stage 36/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:32:17 val_accuracy: 0.93726 early_stopping: 1/5 0.93757
stage 37/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:43 val_accuracy: 0.93821 early_stopping: 0/5 0.93821
stage 38/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:24:05 val_accuracy: 0.93877 early_stopping: 0/5 0.93877
stage 39/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:22:21 val_accuracy: 0.93811 early_stopping: 1/5 0.93877
stage 40/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:15 val_accuracy: 0.93799 early_stopping: 2/5 0.93877
stage 41/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 5:54:09 val_accuracy: 0.93705 early_stopping: 3/5 0.93877
stage 42/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:23:33 val_accuracy: 0.93911 early_stopping: 0/5 0.93911
stage 43/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 5:54:42 val_accuracy: 0.93913 early_stopping: 0/5 0.93913
stage 44/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 4:15:59 val_accuracy: 0.93914 early_stopping: 0/5 0.93914
stage 45/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 7:06:10 val_accuracy: 0.94090 early_stopping: 0/5 0.94090
stage 46/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 7:35:41 val_accuracy: 0.93956 early_stopping: 1/5 0.94090
stage 47/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 4:49:43 val_accuracy: 0.94088 early_stopping: 2/5 0.94090
stage 48/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 3:21:49 val_accuracy: 0.94045 early_stopping: 3/5 0.94090
stage 49/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 4:40:36 val_accuracy: 0.94002 early_stopping: 4/5 0.94090
stage 50/β ββββββββββββββββββββββββββββββββββββββββ 33797/33797 0:00:00 7:16:09 val_accuracy: 0.93965 early_stopping: 5/5 0.94090
Moving best model 202211261525/german_handwriting_45.mlmodel (0.940900444984436) to 202211261525/german_handwriting_best.mlmodel
real 11685m35,360s
user 20753m55,042s
sys 27866m56,116s
Training 2023-05-11
The training data was augmented with all GT from https://github.com/ubtue/Ground-Truth/.
The first try to use the PAGE XML files directly for training required more than 6 hours per epoch:
Trainable params: 4.1 M
Non-trainable params: 0
Total params: 4.1 M
Total estimated model params size (MB): 16
stage 0/β βββββββββββ 48609/48609 6:26:43 β’ 2.11it/s val_accuraβ¦ early_stoppiβ¦
0:00:00 0.664 0/10 0.66353
val_word_aβ¦
0.262
Therefore another try was made using binary data and different arguments for ketos
. Now the time per epoch was reduced to less than 13 minutes:
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ time ketos compile --format-type xml --files list1.train --workers 8 -o list.arrow
Extracting lines ββββββββββββββββββββββββββββββββββββββββ 87% 54011/62100 -:--:-- -:--:--
Output file written to list.arrow
real 78m59,455s
user 975m39,725s
sys 1435m0,902s
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ OMP_NUM_THREADS=1 ketos train -d cuda:0 -f binary -i /home/stweil/.config/kraken/digitue_best.mlmodel -o german_handwriting --resize add -r 0.002 --precision 16 --batch-size 4 --warmup 1 --freeze-backbone 1 listist.arrow
scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
You are using a CUDA device ('NVIDIA RTX A5000') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/ed/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
[05/11/23 08:25:20] WARNING Neural network has been trained on mode 1 images, training set contains mode L data. Consider setting `force_binarization` train.py:588
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
ββββββ³ββββββββββββ³βββββββββββββββββββββββββββ³βββββββββ³βββββββββββββββββββββββββββ³βββββββββββββββββββββββββββ
β β Name β Type β Params β In sizes β Out sizes β
β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
β 0 β val_cer β CharErrorRate β 0 β ? β ? β
β 1 β val_wer β WordErrorRate β 0 β ? β ? β
β 2 β net β MultiParamSequential β 4.1 M β [[1, 1, 120, 400], '?'] β [[1, 292, 1, 50], '?'] β
β 3 β net.C_0 β ActConv2D β 1.3 K β [[1, 1, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 4 β net.Do_1 β Dropout β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 5 β net.Mp_2 β MaxPool β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 60, 200], '?'] β
β 6 β net.C_3 β ActConv2D β 40.0 K β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 7 β net.Do_4 β Dropout β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 8 β net.Mp_5 β MaxPool β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 30, 100], '?'] β
β 9 β net.C_6 β ActConv2D β 55.4 K β [[1, 32, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 10 β net.Do_7 β Dropout β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 11 β net.Mp_8 β MaxPool β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 15, 50], '?'] β
β 12 β net.C_9 β ActConv2D β 110 K β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 13 β net.Do_10 β Dropout β 0 β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 14 β net.S_11 β Reshape β 0 β [[1, 64, 15, 50], '?'] β [[1, 960, 1, 50], '?'] β
β 15 β net.L_12 β TransposedSummarizingRNN β 1.9 M β [[1, 960, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 16 β net.Do_13 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 17 β net.L_14 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 18 β net.Do_15 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 19 β net.L_16 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 20 β net.Do_17 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 21 β net.O_18 β LinSoftmax β 117 K β [[1, 400, 1, 50], '?'] β [[1, 292, 1, 50], '?'] β
ββββββ΄ββββββββββββ΄βββββββββββββββββββββββββββ΄βββββββββ΄βββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββ
Trainable params: 4.1 M
Non-trainable params: 0
Total params: 4.1 M
Total estimated model params size (MB): 16
stage 0/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 16.39it/s val_accuracy: 0.664 val_word_accuracy: 0.252 early_stopping: 0/10 0.66354
stage 1/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:35 β’ 0:00:00 15.02it/s val_accuracy: 0.723 val_word_accuracy: 0.371 early_stopping: 0/10 0.72260
stage 2/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 16.03it/s val_accuracy: 0.754 val_word_accuracy: 0.429 early_stopping: 0/10 0.75389
stage 3/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:38 β’ 0:00:00 15.40it/s val_accuracy: 0.768 val_word_accuracy: 0.47 early_stopping: 0/10 0.76781
stage 4/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:40 β’ 0:00:00 16.11it/s val_accuracy: 0.776 val_word_accuracy: 0.495 early_stopping: 0/10 0.77639
stage 5/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:47 β’ 0:00:00 15.50it/s val_accuracy: 0.784 val_word_accuracy: 0.516 early_stopping: 0/10 0.78355
stage 6/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:38 β’ 0:00:00 16.00it/s val_accuracy: 0.793 val_word_accuracy: 0.537 early_stopping: 0/10 0.79340
stage 7/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:41 β’ 0:00:00 16.51it/s val_accuracy: 0.789 val_word_accuracy: 0.531 early_stopping: 1/10 0.79340
stage 8/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:49 β’ 0:00:00 15.34it/s val_accuracy: 0.812 val_word_accuracy: 0.565 early_stopping: 0/10 0.81226
stage 9/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:41 β’ 0:00:00 15.52it/s val_accuracy: 0.824 val_word_accuracy: 0.554 early_stopping: 0/10 0.82411
stage 10/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:52 β’ 0:00:00 16.54it/s val_accuracy: 0.811 val_word_accuracy: 0.581 early_stopping: 1/10 0.82411
stage 11/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:44 β’ 0:00:00 16.58it/s val_accuracy: 0.819 val_word_accuracy: 0.574 early_stopping: 2/10 0.82411
stage 12/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:53 β’ 0:00:00 16.47it/s val_accuracy: 0.813 val_word_accuracy: 0.591 early_stopping: 3/10 0.82411
stage 13/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:48 β’ 0:00:00 16.03it/s val_accuracy: 0.828 val_word_accuracy: 0.596 early_stopping: 0/10 0.82815
stage 14/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:47 β’ 0:00:00 16.28it/s val_accuracy: 0.824 val_word_accuracy: 0.603 early_stopping: 1/10 0.82815
stage 15/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:47 β’ 0:00:00 15.72it/s val_accuracy: 0.848 val_word_accuracy: 0.607 early_stopping: 0/10 0.84771
stage 16/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:49 β’ 0:00:00 15.50it/s val_accuracy: 0.834 val_word_accuracy: 0.612 early_stopping: 1/10 0.84771
stage 17/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:43 β’ 0:00:00 17.27it/s val_accuracy: 0.842 val_word_accuracy: 0.618 early_stopping: 2/10 0.84771
stage 18/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:44 β’ 0:00:00 15.52it/s val_accuracy: 0.842 val_word_accuracy: 0.624 early_stopping: 3/10 0.84771
stage 19/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:46 β’ 0:00:00 16.22it/s val_accuracy: 0.845 val_word_accuracy: 0.625 early_stopping: 4/10 0.84771
stage 20/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:47 β’ 0:00:00 15.82it/s val_accuracy: 0.826 val_word_accuracy: 0.633 early_stopping: 5/10 0.84771
stage 21/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:52 β’ 0:00:00 15.96it/s val_accuracy: 0.852 val_word_accuracy: 0.571 early_stopping: 0/10 0.85250
stage 22/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:48 β’ 0:00:00 16.32it/s val_accuracy: 0.847 val_word_accuracy: 0.638 early_stopping: 1/10 0.85250
stage 23/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:36 β’ 0:00:00 15.20it/s val_accuracy: 0.845 val_word_accuracy: 0.641 early_stopping: 2/10 0.85250
stage 24/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:30 β’ 0:00:00 15.79it/s val_accuracy: 0.85 val_word_accuracy: 0.648 early_stopping: 3/10 0.85250
stage 25/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:36 β’ 0:00:00 16.58it/s val_accuracy: 0.861 val_word_accuracy: 0.636 early_stopping: 0/10 0.86129
stage 26/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:29 β’ 0:00:00 15.81it/s val_accuracy: 0.849 val_word_accuracy: 0.651 early_stopping: 1/10 0.86129
stage 27/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:36 β’ 0:00:00 16.41it/s val_accuracy: 0.855 val_word_accuracy: 0.653 early_stopping: 2/10 0.86129
stage 28/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 16.58it/s val_accuracy: 0.854 val_word_accuracy: 0.652 early_stopping: 3/10 0.86129
stage 29/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:53 β’ 0:00:00 15.97it/s val_accuracy: 0.853 val_word_accuracy: 0.654 early_stopping: 4/10 0.86129
stage 30/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:52 β’ 0:00:00 16.24it/s val_accuracy: 0.858 val_word_accuracy: 0.65 early_stopping: 5/10 0.86129
stage 31/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:49 β’ 0:00:00 15.59it/s val_accuracy: 0.854 val_word_accuracy: 0.661 early_stopping: 6/10 0.86129
stage 32/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:55 β’ 0:00:00 15.91it/s val_accuracy: 0.863 val_word_accuracy: 0.657 early_stopping: 0/10 0.86270
stage 33/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 15.82it/s val_accuracy: 0.86 val_word_accuracy: 0.657 early_stopping: 1/10 0.86270
stage 34/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 16.12it/s val_accuracy: 0.859 val_word_accuracy: 0.653 early_stopping: 2/10 0.86270
stage 35/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:12 β’ 0:00:00 16.35it/s val_accuracy: 0.854 val_word_accuracy: 0.667 early_stopping: 3/10 0.86270
stage 36/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:05 β’ 0:00:00 16.84it/s val_accuracy: 0.853 val_word_accuracy: 0.662 early_stopping: 4/10 0.86270
stage 37/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:04 β’ 0:00:00 16.74it/s val_accuracy: 0.85 val_word_accuracy: 0.665 early_stopping: 5/10 0.86270
stage 38/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:05 β’ 0:00:00 16.57it/s val_accuracy: 0.849 val_word_accuracy: 0.669 early_stopping: 6/10 0.86270
stage 39/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:09 β’ 0:00:00 16.65it/s val_accuracy: 0.868 val_word_accuracy: 0.606 early_stopping: 0/10 0.86793
stage 40/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:05 β’ 0:00:00 16.34it/s val_accuracy: 0.87 val_word_accuracy: 0.611 early_stopping: 0/10 0.86977
stage 41/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:15 β’ 0:00:00 16.60it/s val_accuracy: 0.854 val_word_accuracy: 0.67 early_stopping: 1/10 0.86977
stage 42/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:07 β’ 0:00:00 16.27it/s val_accuracy: 0.869 val_word_accuracy: 0.635 early_stopping: 2/10 0.86977
stage 43/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:06 β’ 0:00:00 17.22it/s val_accuracy: 0.859 val_word_accuracy: 0.671 early_stopping: 3/10 0.86977
stage 44/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:10 β’ 0:00:00 16.87it/s val_accuracy: 0.854 val_word_accuracy: 0.671 early_stopping: 4/10 0.86977
stage 45/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:04 β’ 0:00:00 16.78it/s val_accuracy: 0.866 val_word_accuracy: 0.628 early_stopping: 5/10 0.86977
stage 46/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:06 β’ 0:00:00 17.11it/s val_accuracy: 0.867 val_word_accuracy: 0.666 early_stopping: 6/10 0.86977
stage 47/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:25 β’ 0:00:00 15.82it/s val_accuracy: 0.87 val_word_accuracy: 0.603 early_stopping: 7/10 0.86977
stage 48/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:51 β’ 0:00:00 15.67it/s val_accuracy: 0.871 val_word_accuracy: 0.618 early_stopping: 0/10 0.87095
stage 49/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:40 β’ 0:00:00 16.49it/s val_accuracy: 0.871 val_word_accuracy: 0.61 early_stopping: 1/10 0.87095
stage 50/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:39 β’ 0:00:00 15.91it/s val_accuracy: 0.872 val_word_accuracy: 0.611 early_stopping: 0/10 0.87216
stage 51/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:34 β’ 0:00:00 15.60it/s val_accuracy: 0.872 val_word_accuracy: 0.614 early_stopping: 0/10 0.87234
stage 52/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:43 β’ 0:00:00 15.51it/s val_accuracy: 0.872 val_word_accuracy: 0.61 early_stopping: 1/10 0.87234
stage 53/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:45 β’ 0:00:00 16.39it/s val_accuracy: 0.8 val_word_accuracy: 0.544 early_stopping: 2/10 0.87234
stage 54/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:51 β’ 0:00:00 14.91it/s val_accuracy: 0.868 val_word_accuracy: 0.678 early_stopping: 3/10 0.87234
stage 55/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:33 β’ 0:00:00 16.22it/s val_accuracy: 0.867 val_word_accuracy: 0.64 early_stopping: 4/10 0.87234
stage 56/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:42 β’ 0:00:00 15.85it/s val_accuracy: 0.853 val_word_accuracy: 0.678 early_stopping: 5/10 0.87234
stage 57/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:12:28 β’ 0:00:00 15.93it/s val_accuracy: 0.868 val_word_accuracy: 0.679 early_stopping: 6/10 0.87234
stage 58/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:14:02 β’ 0:00:00 13.34it/s val_accuracy: 0.866 val_word_accuracy: 0.664 early_stopping: 7/10 0.87234
stage 59/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:15:49 β’ 0:00:00 12.17it/s val_accuracy: 0.869 val_word_accuracy: 0.675 early_stopping: 8/10 0.87234
stage 60/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:15:45 β’ 0:00:00 13.02it/s val_accuracy: 0.871 val_word_accuracy: 0.682 early_stopping: 9/10 0.87234
stage 61/β ββββββββββββββββββββββββββββββββββββββββ 12153/12153 0:15:41 β’ 0:00:00 13.10it/s val_accuracy: 0.871 val_word_accuracy: 0.668 early_stopping: 10/10 0.87234
Moving best model german_handwriting_51.mlmodel (0.8723417520523071) to german_handwriting_best.mlmodel
Training 2023-05-12
This training used additional GT for Kurrentschrift from the validation set of Staatsarchiv ZΓΌrich RegierungsratsbeschlΓΌsse (HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX).
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ time ketos compile --format-type xml --files list-20230511.shuf --workers 8 -o /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/lis
t-20230511.arrow
[05/11/23 17:21:17] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000390_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:21:18] WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000390_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 6 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000390_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:21:20] WARNING Invalid line 10 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000390_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:21:23] WARNING Invalid line 18 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000390_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:21:45] WARNING Invalid line 8 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000199_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:23:29] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000354_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000354_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:30:54] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000147_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:34:16] WARNING Invalid line 9 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000226_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 10 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000226_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:35:06] WARNING Invalid line 8 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000149_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:35:49] WARNING Invalid line 40 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000164_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:36:09] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000145_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:37:09] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000184_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:37:56] WARNING Invalid line 55 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000257_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 56 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000257_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:38:02] WARNING Invalid line 9 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000055_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:39:27] WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000230_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:39:30] WARNING Invalid line 9 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000230_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:43:17] WARNING Invalid line 7 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000220_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:43:18] WARNING Invalid line 9 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000220_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:43:34] WARNING Invalid line 23 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000220_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:44:19] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000053_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:44:54] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000139_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:48:16] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000505_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:49:20] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000023_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:50:43] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 3 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 4 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:50:44] WARNING Invalid line 13 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 14 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000373_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:55:07] WARNING Invalid line 20 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000307_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:55:22] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000277_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:57:01] WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000239_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:57:50] WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000185_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:57:54] WARNING Invalid line 13 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000380_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:58:34] WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000448_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:59:14] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000319_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000319_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:59:15] WARNING Invalid line 6 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000319_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 7 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000319_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 17:59:18] WARNING Invalid line 21 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000319_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:06:20] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000330_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000330_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 3 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000330_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000330_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:07:21] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000072_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:09:59] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000111_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:15:15] WARNING Invalid line 49 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000197_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 50 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000197_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:20:21] WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000454_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:26:28] WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000304_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:26:46] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000175_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:28:55] WARNING Invalid line 25 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000443_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:30:09] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000505_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:31:07] WARNING Invalid line 54 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000367_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 55 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000367_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 56 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000367_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:31:46] WARNING Invalid line 47 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000162_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:32:37] WARNING Invalid line 15 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/Dose_167-569.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:33:55] WARNING Invalid line 16 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000030_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:34:38] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000400_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:35:37] WARNING Invalid line 10 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000316_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:35:44] WARNING Invalid line 15 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000316_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:39:47] WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000068_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:42:45] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/2_000244_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:43:42] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000043_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:46:37] WARNING Invalid line 4 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000258_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 6 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000258_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:47:35] WARNING Invalid line 11 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000046_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:50:00] WARNING Invalid line 28 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000010_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:50:22] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000259_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:52:02] WARNING Invalid line 4 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/Dose_167-168.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/Dose_167-168.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:53:12] WARNING Invalid line 22 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000274_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 18:56:58] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000192_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:00:45] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000298_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:02:01] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000321_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:02:26] WARNING Invalid line 47 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000321_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:05:29] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000040_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:09:08] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000262_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:11:19] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000282_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:13:12] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000439_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000439_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:14:53] WARNING Invalid line 30 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000146_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:16:40] WARNING Invalid line 17 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000289_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:16:53] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000430_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:17:41] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000202_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000202_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 3 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000202_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:17:44] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000209_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:20:25] WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000188_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:27:27] WARNING Invalid line 16 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000348_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 17 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000348_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:27:30] WARNING Invalid line 34 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/2_000036_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:29:40] WARNING Invalid line 43 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000274_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:31:27] WARNING Invalid line 2 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000165_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:37:08] WARNING Invalid line 3 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000062_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:37:59] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000421_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:38:16] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000405_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:38:29] WARNING Invalid line 8 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/1_000353_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:39:35] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000414_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:49:12] WARNING Invalid line 34 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000035_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:50:20] WARNING Invalid line 5 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000013_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:52:41] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000052_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
WARNING Invalid line 1 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000052_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:53:16] WARNING Invalid line 20 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000190_2.jpg: Line polygon outside of image bounds arrow_dataset.py:57
[05/11/23 19:56:40] WARNING Invalid line 0 in /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/page/000330_1.jpg: Line polygon outside of image bounds arrow_dataset.py:57
Extracting lines ββββββββββββββββββββββββββββββββββββββββ 83% 99248/120244 -:--:-- -:--:--
Output file written to /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/list-20230511.arrow
real 164m10,150s
user 1292m16,227s
sys 11m45,785s
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ export OMP_NUM_THREADS=1
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ mkdir 20230512
(venv3.9) stweil@ocr-02:~/src/github/mittagessen/kraken/Handschriften$ time ketos train -d cuda:0 -f binary -i /home/stweil/.config/kraken/digitue_best.mlmodel -o 20230512/german_handwriting --resize add -r 0.0002
--precision 16 --batch-size 4 /data/stweil/HTR_Validation_Set_StAZH_RRB_German_Kurrent_XIX/list-20230511.arrow
scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
You are using a CUDA device ('NVIDIA RTX A5000') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
[05/12/23 07:00:11] WARNING Neural network has been trained on mode 1 images, training set contains mode L data. Consider setting `force_binarization` train.py:588
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
ββββββ³ββββββββββββ³βββββββββββββββββββββββββββ³βββββββββ³βββββββββββββββββββββββββββ³βββββββββββββββββββββββββββ
β β Name β Type β Params β In sizes β Out sizes β
β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©
β 0 β val_cer β CharErrorRate β 0 β ? β ? β
β 1 β val_wer β WordErrorRate β 0 β ? β ? β
β 2 β net β MultiParamSequential β 4.1 M β [[1, 1, 120, 400], '?'] β [[1, 295, 1, 50], '?'] β
β 3 β net.C_0 β ActConv2D β 1.3 K β [[1, 1, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 4 β net.Do_1 β Dropout β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 120, 400], '?'] β
β 5 β net.Mp_2 β MaxPool β 0 β [[1, 32, 120, 400], '?'] β [[1, 32, 60, 200], '?'] β
β 6 β net.C_3 β ActConv2D β 40.0 K β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 7 β net.Do_4 β Dropout β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 60, 200], '?'] β
β 8 β net.Mp_5 β MaxPool β 0 β [[1, 32, 60, 200], '?'] β [[1, 32, 30, 100], '?'] β
β 9 β net.C_6 β ActConv2D β 55.4 K β [[1, 32, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 10 β net.Do_7 β Dropout β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 30, 100], '?'] β
β 11 β net.Mp_8 β MaxPool β 0 β [[1, 64, 30, 100], '?'] β [[1, 64, 15, 50], '?'] β
β 12 β net.C_9 β ActConv2D β 110 K β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 13 β net.Do_10 β Dropout β 0 β [[1, 64, 15, 50], '?'] β [[1, 64, 15, 50], '?'] β
β 14 β net.S_11 β Reshape β 0 β [[1, 64, 15, 50], '?'] β [[1, 960, 1, 50], '?'] β
β 15 β net.L_12 β TransposedSummarizingRNN β 1.9 M β [[1, 960, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 16 β net.Do_13 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 17 β net.L_14 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 18 β net.Do_15 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 19 β net.L_16 β TransposedSummarizingRNN β 963 K β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 20 β net.Do_17 β Dropout β 0 β [[1, 400, 1, 50], '?'] β [[1, 400, 1, 50], '?'] β
β 21 β net.O_18 β LinSoftmax β 118 K β [[1, 400, 1, 50], '?'] β [[1, 295, 1, 50], '?'] β
ββββββ΄ββββββββββββ΄βββββββββββββββββββββββββββ΄βββββββββ΄βββββββββββββββββββββββββββ΄βββββββββββββββββββββββββββ
Trainable params: 4.1 M
Non-trainable params: 0
Total params: 4.1 M
Total estimated model params size (MB): 16
stage 0/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:14 β’ 0:00:00 13.24it/s val_accuracy: 0.759 val_word_accuracy: 0.375 early_stopping: 0/10 0.75863
stage 1/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:13 β’ 0:00:00 13.83it/s val_accuracy: 0.81 val_word_accuracy: 0.491 early_stopping: 0/10 0.81021
stage 2/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:07 β’ 0:00:00 13.69it/s val_accuracy: 0.84 val_word_accuracy: 0.555 early_stopping: 0/10 0.84000
stage 3/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:51 β’ 0:00:00 13.65it/s val_accuracy: 0.848 val_word_accuracy: 0.595 early_stopping: 0/10 0.84794
stage 4/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:13 β’ 0:00:00 13.58it/s val_accuracy: 0.868 val_word_accuracy: 0.604 early_stopping: 0/10 0.86768
stage 5/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:21 β’ 0:00:00 13.40it/s val_accuracy: 0.875 val_word_accuracy: 0.638 early_stopping: 0/10 0.87478
stage 6/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:13 β’ 0:00:00 13.93it/s val_accuracy: 0.864 val_word_accuracy: 0.642 early_stopping: 1/10 0.87478
stage 7/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:02 β’ 0:00:00 13.55it/s val_accuracy: 0.873 val_word_accuracy: 0.658 early_stopping: 2/10 0.87478
stage 8/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:24:51 β’ 0:00:00 13.47it/s val_accuracy: 0.875 val_word_accuracy: 0.673 early_stopping: 0/10 0.87515
stage 9/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:07 β’ 0:00:00 13.39it/s val_accuracy: 0.872 val_word_accuracy: 0.666 early_stopping: 1/10 0.87515
stage 10/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:12 β’ 0:00:00 13.45it/s val_accuracy: 0.876 val_word_accuracy: 0.677 early_stopping: 0/10 0.87589
stage 11/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:09 β’ 0:00:00 13.54it/s val_accuracy: 0.893 val_word_accuracy: 0.696 early_stopping: 0/10 0.89255
stage 12/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:10 β’ 0:00:00 13.40it/s val_accuracy: 0.885 val_word_accuracy: 0.703 early_stopping: 1/10 0.89255
stage 13/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:15 β’ 0:00:00 13.73it/s val_accuracy: 0.896 val_word_accuracy: 0.704 early_stopping: 0/10 0.89574
stage 14/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:01 β’ 0:00:00 13.63it/s val_accuracy: 0.898 val_word_accuracy: 0.714 early_stopping: 0/10 0.89777
stage 15/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:11 β’ 0:00:00 13.57it/s val_accuracy: 0.891 val_word_accuracy: 0.713 early_stopping: 1/10 0.89777
stage 16/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:07 β’ 0:00:00 12.98it/s val_accuracy: 0.895 val_word_accuracy: 0.723 early_stopping: 2/10 0.89777
stage 17/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:55 β’ 0:00:00 14.07it/s val_accuracy: 0.894 val_word_accuracy: 0.723 early_stopping: 3/10 0.89777
stage 18/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:46 β’ 0:00:00 13.64it/s val_accuracy: 0.898 val_word_accuracy: 0.729 early_stopping: 0/10 0.89831
stage 19/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:07 β’ 0:00:00 13.76it/s val_accuracy: 0.894 val_word_accuracy: 0.732 early_stopping: 1/10 0.89831
stage 20/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:48 β’ 0:00:00 13.65it/s val_accuracy: 0.902 val_word_accuracy: 0.736 early_stopping: 0/10 0.90213
stage 21/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:27:03 β’ 0:00:00 13.39it/s val_accuracy: 0.898 val_word_accuracy: 0.733 early_stopping: 1/10 0.90213
stage 22/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:26:59 β’ 0:00:00 13.65it/s val_accuracy: 0.901 val_word_accuracy: 0.738 early_stopping: 2/10 0.90213
stage 23/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:56 β’ 0:00:00 13.40it/s val_accuracy: 0.904 val_word_accuracy: 0.737 early_stopping: 0/10 0.90373
stage 24/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:18 β’ 0:00:00 15.17it/s val_accuracy: 0.903 val_word_accuracy: 0.731 early_stopping: 1/10 0.90373
stage 25/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:24:53 β’ 0:00:00 15.22it/s val_accuracy: 0.902 val_word_accuracy: 0.734 early_stopping: 2/10 0.90373
stage 26/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:13 β’ 0:00:00 13.65it/s val_accuracy: 0.897 val_word_accuracy: 0.739 early_stopping: 3/10 0.90373
stage 27/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:48 β’ 0:00:00 15.96it/s val_accuracy: 0.898 val_word_accuracy: 0.742 early_stopping: 4/10 0.90373
stage 28/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:13 β’ 0:00:00 14.02it/s val_accuracy: 0.895 val_word_accuracy: 0.746 early_stopping: 5/10 0.90373
stage 29/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:15 β’ 0:00:00 14.13it/s val_accuracy: 0.9 val_word_accuracy: 0.748 early_stopping: 6/10 0.90373
stage 30/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:23 β’ 0:00:00 13.67it/s val_accuracy: 0.889 val_word_accuracy: 0.725 early_stopping: 7/10 0.90373
stage 31/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:24:45 β’ 0:00:00 13.76it/s val_accuracy: 0.896 val_word_accuracy: 0.749 early_stopping: 8/10 0.90373
stage 32/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:24:46 β’ 0:00:00 14.34it/s val_accuracy: 0.903 val_word_accuracy: 0.751 early_stopping: 9/10 0.90373
stage 33/β ββββββββββββββββββββββββββββββββββββββββ 22331/22331 0:25:09 β’ 0:00:00 15.40it/s val_accuracy: 0.902 val_word_accuracy: 0.755 early_stopping: 10/10 0.90373
Moving best model 20230512/german_handwriting_23.mlmodel (0.9037277102470398) to 20230512/german_handwriting_best.mlmodel
real 939m21,370s
user 1393m24,389s
sys 45m19,526s
Training β plans for the future
The trainings above where based on the kraken model digitue_best. Future trainings could use the newer model german_print. In addition, more or improved ground truth data sets should be used for the training. Perhaps synthetic data (error free!) could also help.