Training with Kraken - UB-Mannheim/AustrianNewspapers GitHub Wiki

Training Kraken with AustrianNewspapers

Trained models are available from https://ub-backup.bib.uni-mannheim.de/~stweil/tesstrain/kraken/.

Training with AustrianNewspapers 1.x

2021-11

It was tested on 2021-11-18 with latest AustrianNewspapers and Kraken from GitHub. Prepare the lists of PAGE XML files for training and evaluation:

ls TrainingSet_ONB_Newseye_GT_M1+/*xml >list.train
ls ValidationSet_ONB_Newseye_GT_M1+/*xml >list.eval

A test with 64 GiB RAM and --preload fails early:

time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --preload --threads 32 --lag 20 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
Building training set  [#-----------------------------------]  2110/53980  00:13:09  [36.8371] Text line "" is empty after transformations 
Building training set  [#-----------------------------------]  2847/53980  00:14:16  [52.2694] No boundary given for line 
Building training set  [##----------------------------------]  3929/53980  00:14:37  [73.5322] No boundary given for line 
Building training set  [##----------------------------------]  3977/53980  00:14:39  [74.6955] No boundary given for line 
Building training set  [###---------------------------------]  5600/53980  00:15:40  [114.1772] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6695/53980  00:16:42  [147.5183] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6784/53980  00:16:44  [149.6519] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6785/53980  00:16:44  [149.7190] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6791/53980  00:16:47  [150.0795] Text line "" is empty after transformations 
[150.1191] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6797/53980  00:16:47  [150.3513] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6798/53980  00:16:46  [150.4424] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6804/53980  00:16:46  [150.8330] Text line "" is empty after transformations 
[150.8335] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6807/53980  00:16:49  [150.9921] Text line "" is empty after transformations 
[151.0413] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6815/53980  00:16:49  [151.5072] Text line "" is empty after transformations 
[151.5077] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6820/53980  00:16:49  [151.8785] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6836/53980  00:16:52  [152.1064] Text line "" is empty after transformations 
[152.1065] Text line "" is empty after transformations 
[152.2932] Text line "" is empty after transformations 
[152.2971] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6844/53980  00:16:51  [152.6193] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6847/53980  00:16:51  [152.7810] Text line "" is empty after transformations 
[152.8248] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6851/53980  00:16:51  [153.0566] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6854/53980  00:16:55  [153.1822] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  7300/53980  00:17:45  [172.5671] Text line "" is empty after transformations 
Building training set  [#####-------------------------------]  7863/53980  00:18:31  [195.3467] Text line "" is empty after transformations 
Building training set  [#####-------------------------------]  8603/53980  00:19:06  [220.7014] Text line "" is empty after transformations 
Building training set  [######------------------------------]  10314/53980  00:19:35 [283.3722] Text line "" is empty after transformations 
Building training set  [#######-----------------------------]  11875/53980  00:20:54 [359.6720] Text line "" is empty after transformations 
[359.7049] Text line "" is empty after transformations 
Building training set  [########----------------------------]  12191/53980  00:21:13 [377.1624] Text line "" is empty after transformations 
[377.1626] Text line "" is empty after transformations 
Building training set  [########----------------------------]  12194/53980  00:21:13 [377.3784] Text line "" is empty after transformations 
Building training set  [#########---------------------------]  13573/53980  00:22:10 [452.6622] Text line "" is empty after transformations 
Building training set  [##########--------------------------]  15360/53980  00:23:31 [566.7300] Text line "" is empty after transformations 
Building training set  [##########--------------------------]  15382/53980  00:23:32 [568.2695] Text line "" is empty after transformations 
[568.2697] Text line "" is empty after transformations 
Building training set  [##########--------------------------]  15395/53980  00:23:31 [568.9404] Text line "" is empty after transformations 
[...]
Building training set  [########################------------]  37135/53980  00:22:47 [3021.7851] Text line "" is empty after transformations 
Building training set  [##########################----------]  39063/53980  00:21:13 [3339.9409] Text line "" is empty after transformations 
Building training set  [##########################----------]  39075/53980  00:21:12 [3341.6370] Text line "" is empty after transformations 
Building training set  [##########################----------]  39105/53980  00:21:10 [3346.4863] Text line "" is empty after transformations 
Building training set  [##########################----------]  39109/53980  00:21:10 [3347.5681] Text line "" is empty after transformations 
Building training set  [##########################----------]  39196/53980  00:21:05 [3362.2098] Text line "" is empty after transformations 
Building training set  [##########################----------]  39435/53980  00:20:52 [3402.4703] Text line "" is empty after transformations 
Building training set  [#############################-------]  43515/53980  00:16:33 Traceback (most recent call last):
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/bin/ketos", line 10, in <module>
    sys.exit(cli())
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1128, in __call__
    return self.main(*args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1053, in main
    rv = self.invoke(ctx)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1659, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1395, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 754, in invoke
    return __callback(*args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/decorators.py", line 26, in new_func
    return f(get_current_context(), *args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/ketos.py", line 569, in train
    trainer = KrakenTrainer.recognition_train_gen(hyper_params,
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/train.py", line 679, in recognition_train_gen
    for im in pool.imap_unordered(partial(_star_fun, gt_set.parse), training_data, 5):
  File "/usr/lib/python3.9/multiprocessing/pool.py", line 448, in <genexpr>
    return (item for chunk in result for item in chunk)
  File "/usr/lib/python3.9/multiprocessing/pool.py", line 870, in next
    raise value
multiprocessing.pool.MaybeEncodingError: Error sending result: '[{'text': 'Kornmehl fein Nr. 2 8 fl. 59 kr., β€ž β€ž 9 kr.', 'image': tensor([[[0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         ...,
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.]]]), 'baseline': [(194, 639), (342, 639), (420, 640), (497, 638), (541, 638), (808, 637), (859, 636), (924, 635), (975, 634), (1047, 639), (1157, 638), (1239, 633), (1310, 633)], 'boundary': [(194, 601), (1310, 601), (1310, 648), (194, 648)], 'im_mode': <built-in method mode of Tensor object at 0x7f350ccc1ef0>, 'preload': True, 'preparse': True}, {'text': 'SΓ€cke werden ΕΏeparat berechnet und im guten ZuΕΏtande franco zum gleichen', 'image': tensor([[[0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         ...,
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.]]]), 'baseline': [(173, 689), (260, 688), (391, 687), (523, 686), (685, 686), (776, 685), (834, 684), (940, 684), (1101, 682), (1217, 682), (1300, 680), (1436, 678)], 'boundary': [(173, 648), (1436, 648), (1436, 697), (173, 697)], 'im_mode': <built-in method mode of Tensor object at 0x7f346c369770>, 'preload': True, 'preparse': True}, {'text': 'PreiΕΏe zurΓΌckgenommen. 23', 'image': tensor([[[0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         ...,
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.]]]), 'baseline': [(92, 730), (471, 725), (1413, 720), (1419, 725), (1434, 727)], 'boundary': [(93, 688), (1434, 688), (1434, 747), (93, 747)], 'im_mode': <built-in method mode of Tensor object at 0x7f346c369e50>, 'preload': True, 'preparse': True}, {'text': 'VerΕΏteigerungsβΈ—Kundmachung.', 'image': tensor([[[0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         ...,
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.]]]), 'baseline': [(349, 816), (1176, 808)], 'boundary': [(349, 751), (1178, 751), (1178, 829), (349, 829)], 'im_mode': <built-in method mode of Tensor object at 0x7f346c3697c0>, 'preload': True, 'preparse': True}, {'text': 'Am 4. Juli d. Js. um 9 Uhr frΓΌh angefangen, werden im HauΕΏe Nr. 57', 'image': tensor([[[0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         ...,
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.],
         [0., 0., 0.,  ..., 0., 0., 0.]]]), 'baseline': [(172, 868), (231, 869), (282, 868), (372, 868), (418, 867), (497, 864), (568, 865), (610, 865), (692, 863), (804, 862), (973, 861), (1122, 861), (1180, 861), (1297, 859), (1373, 859), (1436, 858)], 'boundary': [(174, 826), (1436, 826), (1436, 878), (174, 878)], 'im_mode': <built-in method mode of Tensor object at 0x7f346c3692c0>, 'preload': True, 'preparse': True}]'. Reason: 'RuntimeError('falseINTERNAL ASSERT FAILED at "../aten/src/ATen/MapAllocator.cpp":300, please report a bug to PyTorch. unable to write to file </torch_3110641_1359>')'

real    69m3,582s
user    628m1,017s
sys     224m17,866s

The 2nd test with modified command line (no --preload), 64 GiB RAM and 8 GiB swap fails with out of memory after stage 1 during the validation:

time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --threads 32 --lag 20 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
Building training set  [------------------------------------]  1193/53980  00:00:44[5.4199] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1220/53980  00:00:44[5.4601] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1288/53980  00:00:44[5.5276] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1348/53980  00:00:44[5.5837] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1349/53980  00:00:44[5.5856] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1359/53980  00:00:44[5.5915] Text line "" is empty after transformations 
[5.5919] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1442/53980  00:00:44[5.6532] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1445/53980  00:00:44[5.6568] Text line "" is empty after transformations 
Building training set  [------------------------------------]  1447/53980  00:00:44[5.6592] Text line "" is empty after transformations 
Building training set  [##----------------------------------]  3804/53980  00:00:42[6.0189] Text line "" is empty after transformations 
Building training set  [##----------------------------------]  4088/53980  00:00:42[6.2008] Text line "" is empty after transformations 
[6.2011] Text line "" is empty after transformations 
Building training set  [##----------------------------------]  4301/53980  00:00:41[6.3401] Text line "" is empty after transformations 
Building training set  [###---------------------------------]  4645/53980  00:00:32[6.6525] Text line "" is empty after transformations 
Building training set  [###---------------------------------]  4662/53980  00:00:32[6.6656] Text line "" is empty after transformations 
Building training set  [###---------------------------------]  4702/53980  00:00:32[6.6964] Text line "" is empty after transformations 
Building training set  [###---------------------------------]  4716/53980  00:00:32[6.7079] Text line "" is empty after transformations 
Building training set  [###---------------------------------]  4845/53980  00:00:32[6.8163] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  6465/53980  00:00:31[9.6205] Text line "" is empty after transformations 
Building training set  [####--------------------------------]  7310/53980  00:00:34[11.6840] Text line "" is empty after transformations 
Building training set  [######------------------------------]  9325/53980  00:00:53[17.7361] Text line "" is empty after transformations 
Building training set  [######------------------------------]  9660/53980  00:00:56[18.9291] Text line "" is empty after transformations 
Building training set  [##########--------------------------]  15720/53980  00:01:47[50.8938] Text line "" is empty after transformations 
Building training set  [###########-------------------------]  17410/53980  00:02:00[63.6588] Text line "" is empty after transformations 
[63.6592] Text line "" is empty after transformations 
Building training set  [###########-------------------------]  17415/53980  00:02:00[63.7153] Text line "" is empty after transformations 
[63.7155] Text line "" is empty after transformations 
Building training set  [#############-----------------------]  19810/53980  00:02:14[84.1980] Text line "" is empty after transformations 
Building training set  [#############-----------------------]  20215/53980  00:02:15[87.9396] Text line "" is empty after transformations 
Building training set  [#############-----------------------]  20260/53980  00:02:15[88.3330] Text line "" is empty after transformations 
Building training set  [#############-----------------------]  20430/53980  00:02:17[89.9166] Text line "" is empty after transformations 
Building training set  [#############-----------------------]  20505/53980  00:02:17[90.6151] Text line "" is empty after transformations 
Building training set  [##############----------------------]  21410/53980  00:02:21[99.4895] Text line "" is empty after transformations 
[99.4896] Text line "" is empty after transformations 
[99.4897] Text line "" is empty after transformations 
Building training set  [##############----------------------]  21415/53980  00:02:21[99.5623] Text line "" is empty after transformations 
[99.5624] Text line "" is empty after transformations 
[99.5624] Text line "" is empty after transformations 
[99.5625] Text line "" is empty after transformations 
[99.5625] Text line "" is empty after transformations 
Building training set  [##############----------------------]  21425/53980  00:02:21[99.5884] Text line "" is empty after transformations 
Building training set  [##############----------------------]  22105/53980  00:02:24[106.5605] Text line "" is empty after transformations 
Building training set  [##############----------------------]  22195/53980  00:02:24[107.5499] Text line "" is empty after transformations 
Building training set  [##############----------------------]  22230/53980  00:02:24[107.9135] Text line "" is empty after transformations 
Building training set  [##############----------------------]  22415/53980  00:02:25[109.7858] Text line "" is empty after transformations 
Building training set  [###############---------------------]  22740/53980  00:02:27[113.3687] Text line "" is empty after transformations 
Building training set  [###############---------------------]  23710/53980  00:02:29[123.6277] Text line "" is empty after transformations 
Building training set  [###############---------------------]  23715/53980  00:02:29[123.6914] Text line "" is empty after transformations 
Building training set  [##################------------------]  27400/53980  00:02:43[174.9981] Text line "" is empty after transformations 
Building training set  [##################------------------]  28185/53980  00:02:45[187.2889] Text line "" is empty after transformations 
[187.2891] Text line "" is empty after transformations 
Building training set  [###################-----------------]  28865/53980  00:02:46[198.3607] Text line "" is empty after transformations 
Building training set  [####################----------------]  30690/53980  00:02:49[229.3225] No boundary given for line 
Building training set  [#####################---------------]  31775/53980  00:02:49[248.7394] No boundary given for line 
Building training set  [#####################---------------]  31830/53980  00:02:49[249.7704] No boundary given for line 
Building training set  [#######################-------------]  34535/53980  00:02:45[300.2663] Text line "" is empty after transformations 
Building training set  [#########################-----------]  38285/53980  00:02:31[376.4473] Text line "" is empty after transformations 
[376.4474] Text line "" is empty after transformations 
[376.5285] Text line "" is empty after transformations 
Building training set  [#########################-----------]  38390/53980  00:02:31[378.7820] Text line "" is empty after transformations 
Building training set  [#########################-----------]  38415/53980  00:02:30[379.3506] Text line "" is empty after transformations 
Building training set  [#########################-----------]  38845/53980  00:02:29[388.8674] Text line "" is empty after transformations 
Building training set  [##########################----------]  39100/53980  00:02:27[394.4711] Text line "" is empty after transformations 
[394.4713] Text line "" is empty after transformations 
Building training set  [##########################----------]  40090/53980  00:02:22[416.7219] Text line "" is empty after transformations 
[416.7220] Text line "" is empty after transformations 
Building training set  [############################--------]  42265/53980  00:02:12[486.7281] Text line "" is empty after transformations 
Building training set  [############################--------]  42340/53980  00:02:12[489.9111] Text line "" is empty after transformations 
[489.9112] Text line "" is empty after transformations 
Building training set  [############################--------]  42350/53980  00:02:12[490.0899] Text line "" is empty after transformations 
Building training set  [############################--------]  42360/53980  00:02:12[490.4746] Text line "" is empty after transformations 
Building training set  [############################--------]  42365/53980  00:02:12[490.6931] Text line "" is empty after transformations 
Building training set  [############################--------]  42370/53980  00:02:12[490.8640] Text line "" is empty after transformations 
Building training set  [############################--------]  42380/53980  00:02:12[491.2308] Text line "" is empty after transformations 
[491.2309] Text line "" is empty after transformations 
Building training set  [############################--------]  42385/53980  00:02:12[491.6978] Text line "" is empty after transformations 
Building training set  [############################--------]  42400/53980  00:02:12[492.0886] Text line "" is empty after transformations 
Building training set  [############################--------]  42405/53980  00:02:12[492.2673] Text line "" is empty after transformations 
[492.2674] Text line "" is empty after transformations 
Building training set  [############################--------]  42415/53980  00:02:12[492.7701] Text line "" is empty after transformations 
Building training set  [############################--------]  42425/53980  00:02:12[493.0587] Text line "" is empty after transformations 
[493.0588] Text line "" is empty after transformations 
Building training set  [############################--------]  42435/53980  00:02:12[493.4583] Text line "" is empty after transformations 
Building training set  [############################--------]  42440/53980  00:02:12[493.7949] Text line "" is empty after transformations 
[493.8640] Text line "" is empty after transformations 
Building training set  [############################--------]  42450/53980  00:02:12[494.0369] Text line "" is empty after transformations 
Building training set  [############################--------]  42455/53980  00:02:12[494.2519] Text line "" is empty after transformations 
Building training set  [############################--------]  42460/53980  00:02:12[494.5990] Text line "" is empty after transformations 
[494.5992] Text line "" is empty after transformations 
Building training set  [############################--------]  43050/53980  00:02:09[517.9345] Text line "" is empty after transformations 
Building training set  [##############################------]  46015/53980  00:01:49[637.7727] Text line "" is empty after transformations 
Building training set  [###############################-----]  47535/53980  00:01:34[701.6049] Text line "" is empty after transformations 
Building training set  [#################################---]  49825/53980  00:01:06[801.3096] Text line "" is empty after transformations 
Building training set  [##################################--]  52005/53980  00:00:33[898.7751] Text line "" is empty after transformations 
Building training set  [##################################--]  52020/53980  00:00:33[899.4902] Text line "" is empty after transformations 
[899.4903] Text line "" is empty after transformations 
[899.4903] Text line "" is empty after transformations 
Building training set  [####################################]  53980/53980          
Building validation set  [####--------------------------------]  564/4813[990.4600] Text line "" is empty after transformations 
Building validation set  [#####-------------------------------]  678/4813[990.5313] Text line "" is empty after transformations 
Building validation set  [#####-------------------------------]  802/4813[990.6373] Text line "" is empty after transformations 
Building validation set  [####################################]  4813/4813          [993.2221] alphabet mismatch: chars in training set only: {'Ε™', 'Ι”', '~', 'Ε‘', '⁡', '⬀', '⅐', 'β…–', 'β…”', 'β‰…', 'β–³', 'Γ‰', 'β–²', 'ʞ', '⁸', 'β…™', 'ΕΎ', '”', 'Γ«', '⁰', 'β—Ό', '–', 'β…š', '⁹', 'β…“', 'Ε ', '’', '✀', 'Γ”', 'Β±', 'β€š', 'Γ²', 'Γͺ', '†', 'βΈ«', 'β—―', 'Γ³', 'Β³', 'È', 'Γ’', 'Γ±', 'β‚ˆ', 'Γ¦', 'Γ»', '⁢', '₆', 'βœ•', 'β€˜', 'ΒΉ', 'β‚„', '⁷', '⁴', 'Β°', 'Γ΄', 'β…•', '-'} (not included in accuracy test during training) 
[993.2223] alphabet mismatch: chars in validation set only: {'ō'} (not trained) 
Initializing model βœ“
stage 1/∞  [####################################]  53882/53882          
Traceback (most recent call last):
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/bin/ketos", line 10, in <module>
    sys.exit(cli())
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1128, in __call__
    return self.main(*args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1053, in main
    rv = self.invoke(ctx)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1659, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 1395, in invoke
    return ctx.invoke(self.callback, **ctx.params)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/core.py", line 754, in invoke
    return __callback(*args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/click/decorators.py", line 26, in new_func
    return f(get_current_context(), *args, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/ketos.py", line 604, in train
    trainer.run(_print_eval, _draw_progressbar)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/train.py", line 498, in run
    eval_res = self.evaluator(self.model, self.val_set, self.device)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/train.py", line 373, in recognition_evaluator_fn
    chars, error = compute_error(rec, val_loader)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/dataset.py", line 265, in compute_error
    preds = model.predict_string(batch['image'], batch['seq_lens'])
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/models.py", line 116, in predict_string
    o, olens = self.forward(line, lens)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/models.py", line 79, in forward
    o, olens = self.nn.nn(line, lens)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/kraken/lib/layers.py", line 27, in forward
    inputs = module(*inputs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl
    return forward_call(*input, **kwargs)
  File "/home/stweil/src/github/mittagessen/kraken/venv3.9/lib/python3.9/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler
    _error_if_any_worker_fails()
RuntimeError: DataLoader worker (pid 3137907) is killed by signal: Killed.

real    72m27,371s
user    311m7,803s
sys     274m42,800s

For the 3rd test, the available memory was increased. 64 GiB RAM und 40 GiB swap seems to be sufficient and are nearly filled completely during validation at the end of a stage. Training requires about an hour per epoch.

time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --threads 32 --lag 20 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
[...]
Initializing model βœ“
stage 1/∞  [####################################]  53882/53882          Accuracy report (1) 0.9592 171710 7000
stage 2/∞  [####################################]  53882/53882          Accuracy report (2) 0.9715 171689 4890
stage 3/∞  [####################################]  53882/53882          Accuracy report (3) 0.9742 171834 4425
stage 4/∞  [####################################]  53882/53882          Accuracy report (4) 0.9792 171575 3570
stage 5/∞  [####################################]  53882/53882          Accuracy report (5) 0.9801 171715 3414
stage 6/∞  [####################################]  53882/53882          Accuracy report (6) 0.9816 171639 3163
stage 7/∞  [####################################]  53882/53882          Accuracy report (7) 0.9824 171679 3024
stage 8/∞  [####################################]  53882/53882          Accuracy report (8) 0.9828 171697 2961
stage 9/∞  [####################################]  53882/53882          Accuracy report (9) 0.9830 171636 2921
stage 10/∞  [####################################]  53882/53882          Accuracy report (10) 0.9838 171772 2790
stage 11/∞  [####################################]  53882/53882          Accuracy report (11) 0.9842 171759 2711
stage 12/∞  [####################################]  53882/53882          Accuracy report (12) 0.9843 171793 2699
stage 13/∞  [####################################]  53882/53882          Accuracy report (13) 0.9829 171695 2943
stage 14/∞  [####################################]  53882/53882          Accuracy report (14) 0.9847 171794 2620
stage 15/∞  [####################################]  53882/53882          Accuracy report (15) 0.9844 171733 2683
stage 16/∞  [####################################]  53882/53882          Accuracy report (16) 0.9854 171912 2508
stage 17/∞  [####################################]  53882/53882          Accuracy report (17) 0.9850 171734 2584
stage 18/∞  [####################################]  53882/53882          Accuracy report (18) 0.9850 171754 2570
stage 19/∞  [####################################]  53882/53882          Accuracy report (19) 0.9849 171822 2595
stage 20/∞  [####################################]  53882/53882          Accuracy report (20) 0.9844 171761 2687
stage 21/∞  [####################################]  53882/53882          Accuracy report (21) 0.9850 171839 2576
stage 22/∞  [####################################]  53882/53882          Accuracy report (22) 0.9852 171711 2545
stage 23/∞  [####################################]  53882/53882           Accuracy report (23) 0.9850 171831 2581
stage 24/∞  [####################################]  53882/53882           Accuracy report (24) 0.9855 171714 2493
stage 25/∞  [####################################]  53882/53882           Accuracy report (25) 0.9851 171610 2554
stage 26/∞  [####################################]  53882/53882           Accuracy report (26) 0.9850 171660 2570
stage 27/∞  [####################################]  53882/53882           Accuracy report (27) 0.9856 171819 2479
stage 28/∞  [####################################]  53882/53882           Accuracy report (28) 0.9855 171747 2495
stage 29/∞  [####################################]  53882/53882           Accuracy report (29) 0.9850 171765 2577
stage 30/∞  [####################################]  53882/53882           Accuracy report (30) 0.9851 171795 2559
stage 31/∞  [####################################]  53882/53882           Accuracy report (31) 0.9853 171670 2524
stage 32/∞  [####################################]  53882/53882           Accuracy report (32) 0.9846 171682 2644
stage 33/∞  [####################################]  53882/53882           Accuracy report (33) 0.9853 171741 2520
stage 34/∞  [####################################]  53882/53882           Accuracy report (34) 0.9856 171765 2478
stage 35/∞  [####################################]  53882/53882           Accuracy report (35) 0.9852 171904 2548
stage 36/∞  [####################################]  53882/53882           Accuracy report (36) 0.9856 171801 2473
stage 37/∞  [####################################]  53882/53882           Accuracy report (37) 0.9849 171932 2600
stage 38/∞  [####################################]  53882/53882           Accuracy report (38) 0.9854 171744 2511
stage 39/∞  [####################################]  53882/53882           Accuracy report (39) 0.9851 171842 2569
stage 40/∞  [####################################]  53882/53882           Accuracy report (40) 0.9847 171712 2620
stage 41/∞  [####################################]  53882/53882           Accuracy report (41) 0.9854 171709 2501
stage 42/∞  [####################################]  53882/53882           Accuracy report (42) 0.9853 171690 2523
stage 43/∞  [####################################]  53882/53882           Accuracy report (43) 0.9833 171674 2862
stage 44/∞  [####################################]  53882/53882           Accuracy report (44) 0.9855 171717 2498

Moving best model austriannewspapers_36.mlmodel (0.9856054186820984) to austriannewspapers_best.mlmodel

real    2261m28,446s
user    11756m21,598s
sys     12025m18,217s

ls -lt austriannewspapers_*
-rw-r--r-- 1 stweil stweil 16242901 20. Nov 10:30 austriannewspapers_best.mlmodel
-rw-r--r-- 1 stweil stweil 16243149 20. Nov 10:30 austriannewspapers_44.mlmodel
-rw-r--r-- 1 stweil stweil 16243118 20. Nov 09:40 austriannewspapers_43.mlmodel
-rw-r--r-- 1 stweil stweil 16243087 20. Nov 08:49 austriannewspapers_42.mlmodel
-rw-r--r-- 1 stweil stweil 16243056 20. Nov 07:58 austriannewspapers_41.mlmodel
-rw-r--r-- 1 stweil stweil 16243025 20. Nov 07:07 austriannewspapers_40.mlmodel
-rw-r--r-- 1 stweil stweil 16242994 20. Nov 06:16 austriannewspapers_39.mlmodel
-rw-r--r-- 1 stweil stweil 16242963 20. Nov 05:25 austriannewspapers_38.mlmodel
-rw-r--r-- 1 stweil stweil 16242932 20. Nov 04:34 austriannewspapers_37.mlmodel
-rw-r--r-- 1 stweil stweil 16242901 20. Nov 03:43 austriannewspapers_36.mlmodel
-rw-r--r-- 1 stweil stweil 16242870 20. Nov 02:52 austriannewspapers_35.mlmodel
-rw-r--r-- 1 stweil stweil 16242840 20. Nov 02:01 austriannewspapers_34.mlmodel
-rw-r--r-- 1 stweil stweil 16242809 20. Nov 01:10 austriannewspapers_33.mlmodel
-rw-r--r-- 1 stweil stweil 16242778 20. Nov 00:19 austriannewspapers_32.mlmodel
-rw-r--r-- 1 stweil stweil 16242747 19. Nov 23:28 austriannewspapers_31.mlmodel
-rw-r--r-- 1 stweil stweil 16242716 19. Nov 22:37 austriannewspapers_30.mlmodel
-rw-r--r-- 1 stweil stweil 16242685 19. Nov 21:46 austriannewspapers_29.mlmodel
-rw-r--r-- 1 stweil stweil 16242654 19. Nov 20:56 austriannewspapers_28.mlmodel
-rw-r--r-- 1 stweil stweil 16242623 19. Nov 20:05 austriannewspapers_27.mlmodel
-rw-r--r-- 1 stweil stweil 16242592 19. Nov 19:14 austriannewspapers_26.mlmodel
-rw-r--r-- 1 stweil stweil 16242561 19. Nov 18:24 austriannewspapers_25.mlmodel
-rw-r--r-- 1 stweil stweil 16242530 19. Nov 17:32 austriannewspapers_24.mlmodel
-rw-r--r-- 1 stweil stweil 16242499 19. Nov 16:41 austriannewspapers_23.mlmodel
-rw-r--r-- 1 stweil stweil 16242468 19. Nov 15:50 austriannewspapers_22.mlmodel
-rw-r--r-- 1 stweil stweil 16242437 19. Nov 14:59 austriannewspapers_21.mlmodel
-rw-r--r-- 1 stweil stweil 16242406 19. Nov 14:02 austriannewspapers_20.mlmodel
-rw-r--r-- 1 stweil stweil 16242376 19. Nov 13:12 austriannewspapers_19.mlmodel
-rw-r--r-- 1 stweil stweil 16242345 19. Nov 12:21 austriannewspapers_18.mlmodel
-rw-r--r-- 1 stweil stweil 16242315 19. Nov 11:31 austriannewspapers_17.mlmodel
-rw-r--r-- 1 stweil stweil 16242285 19. Nov 10:41 austriannewspapers_16.mlmodel
-rw-r--r-- 1 stweil stweil 16242255 19. Nov 09:50 austriannewspapers_15.mlmodel
-rw-r--r-- 1 stweil stweil 16242225 19. Nov 08:59 austriannewspapers_14.mlmodel
-rw-r--r-- 1 stweil stweil 16242195 19. Nov 08:08 austriannewspapers_13.mlmodel
-rw-r--r-- 1 stweil stweil 16242165 19. Nov 07:18 austriannewspapers_12.mlmodel
-rw-r--r-- 1 stweil stweil 16242135 19. Nov 06:28 austriannewspapers_11.mlmodel
-rw-r--r-- 1 stweil stweil 16242105 19. Nov 05:37 austriannewspapers_10.mlmodel
-rw-r--r-- 1 stweil stweil 16242074 19. Nov 04:46 austriannewspapers_9.mlmodel
-rw-r--r-- 1 stweil stweil 16242044 19. Nov 03:56 austriannewspapers_8.mlmodel
-rw-r--r-- 1 stweil stweil 16242014 19. Nov 03:05 austriannewspapers_7.mlmodel
-rw-r--r-- 1 stweil stweil 16241984 19. Nov 02:14 austriannewspapers_6.mlmodel
-rw-r--r-- 1 stweil stweil 16241954 19. Nov 01:23 austriannewspapers_5.mlmodel
-rw-r--r-- 1 stweil stweil 16241924 19. Nov 00:33 austriannewspapers_4.mlmodel
-rw-r--r-- 1 stweil stweil 16241894 18. Nov 23:41 austriannewspapers_3.mlmodel
-rw-r--r-- 1 stweil stweil 16241864 18. Nov 22:51 austriannewspapers_2.mlmodel
-rw-r--r-- 1 stweil stweil 16241834 18. Nov 22:00 austriannewspapers_1.mlmodel

2022-05

stweil@ocr-02:~/src/github/UB-Mannheim/AustrianNewspapers$ source venv3.9/bin/activate
(venv3.9) stweil@ocr-02:~/src/github/UB-Mannheim/AustrianNewspapers$ time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --lag 20 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
WARNING:root:Torch version 1.11.0+cu113 has not been tested with coremltools. You may run into unexpected errors. Torch 1.10.2 is the most recent version that has been tested.
[05/20/22 21:21:06] WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
[05/20/22 21:21:07] WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
[05/20/22 21:21:08] WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
[05/20/22 21:21:09] WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  No boundary given for line                                                                                                                  train.py:351
                    WARNING  No boundary given for line                                                                                                                  train.py:351
                    WARNING  No boundary given for line                                                                                                                  train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
[05/20/22 21:21:10] WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  Text line "" is empty after transformations                                                                                                 train.py:351
                    WARNING  alphabet mismatch: chars in training set only: {'⬀', 'Γ΄', 'β€˜', 'β€š', 'βœ•', 'Γ²', 'β—―', '’', 'Ε ', 'β…™', 'β…•', 'Β³', 'β‰…', '⁰', '⁷', 'È', 'β…–', 'Ε™',   train.py:304
                             '⁸', '⅐', '⁢', 'Γ’', 'β–³', 'βΈ«', 'Γͺ', 'β—Ό', '⁹', 'Ι”', 'Γ»', '⁴', '⁡', 'Γ³', 'β‚ˆ', '†', 'Ε‘', 'β…”', 'Γ¦', 'Γ«', '–', '✀', 'ΕΎ', 'β…š', '₆', 'Γ”', 'β–²', 'Β°',             
                             'Β±', '-', '”', 'ʞ', 'Γ±', 'β‚„', 'ΒΉ', 'Γ‰', 'β…“', '~'} (not included in accuracy test during training)                                                      
                    WARNING  alphabet mismatch: chars in validation set only: {'ō'} (not trained)                                                                        train.py:308
Trainer already configured with model summary callbacks: [<class 'pytorch_lightning.callbacks.rich_model_summary.RichModelSummary'>]. Skipping setting a default `ModelSummary` callback.
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
[05/20/22 21:21:23] WARNING  Non-encodable sequence ō... encountered. Advancing one code point.                                                                          codec.py:131
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┓
┃    ┃ Name      ┃ Type                     ┃ Params ┃
┑━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━┩
β”‚ 0  β”‚ net       β”‚ MultiParamSequential     β”‚  4.1 M β”‚
β”‚ 1  β”‚ net.C_0   β”‚ ActConv2D                β”‚  1.3 K β”‚
β”‚ 2  β”‚ net.Do_1  β”‚ Dropout                  β”‚      0 β”‚
β”‚ 3  β”‚ net.Mp_2  β”‚ MaxPool                  β”‚      0 β”‚
β”‚ 4  β”‚ net.C_3   β”‚ ActConv2D                β”‚ 40.0 K β”‚
β”‚ 5  β”‚ net.Do_4  β”‚ Dropout                  β”‚      0 β”‚
β”‚ 6  β”‚ net.Mp_5  β”‚ MaxPool                  β”‚      0 β”‚
β”‚ 7  β”‚ net.C_6   β”‚ ActConv2D                β”‚ 55.4 K β”‚
β”‚ 8  β”‚ net.Do_7  β”‚ Dropout                  β”‚      0 β”‚
β”‚ 9  β”‚ net.Mp_8  β”‚ MaxPool                  β”‚      0 β”‚
β”‚ 10 β”‚ net.C_9   β”‚ ActConv2D                β”‚  110 K β”‚
β”‚ 11 β”‚ net.Do_10 β”‚ Dropout                  β”‚      0 β”‚
β”‚ 12 β”‚ net.S_11  β”‚ Reshape                  β”‚      0 β”‚
β”‚ 13 β”‚ net.L_12  β”‚ TransposedSummarizingRNN β”‚  1.9 M β”‚
β”‚ 14 β”‚ net.Do_13 β”‚ Dropout                  β”‚      0 β”‚
β”‚ 15 β”‚ net.L_14  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚
β”‚ 16 β”‚ net.Do_15 β”‚ Dropout                  β”‚      0 β”‚
β”‚ 17 β”‚ net.L_16  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚
β”‚ 18 β”‚ net.Do_17 β”‚ Dropout                  β”‚      0 β”‚
β”‚ 19 β”‚ net.O_18  β”‚ LinSoftmax               β”‚ 71.0 K β”‚
β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Trainable params: 4.1 M                                                                                                                                                              
Non-trainable params: 0                                                                                                                                                              
Total params: 4.1 M                                                                                                                                                                  
Total estimated model params size (MB): 16                                                                                                                                           
stage 0/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:11 val_accuracy: 0.96013  early_stopping: 0/20 0.96013
stage 1/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:04 val_accuracy: 0.97261  early_stopping: 0/20 0.97261
stage 2/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:39 val_accuracy: 0.97690  early_stopping: 0/20 0.97690
stage 3/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:00 val_accuracy: 0.97981  early_stopping: 0/20 0.97981
stage 4/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:56 val_accuracy: 0.97999  early_stopping: 0/20 0.97999
stage 5/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:14 val_accuracy: 0.98280  early_stopping: 0/20 0.98280
stage 6/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:07 val_accuracy: 0.98406  early_stopping: 0/20 0.98406
stage 7/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:55 val_accuracy: 0.98363  early_stopping: 1/20 0.98406
stage 8/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:37 val_accuracy: 0.98446  early_stopping: 0/20 0.98446
stage 9/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:47 val_accuracy: 0.98415  early_stopping: 1/20 0.98446
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:20 val_accuracy: 0.97640  early_stopping: 2/20 0.98446
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:41 val_accuracy: 0.98462  early_stopping: 0/20 0.98462
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:46 val_accuracy: 0.98495  early_stopping: 0/20 0.98495
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:26 val_accuracy: 0.98457  early_stopping: 1/20 0.98495
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:48 val_accuracy: 0.98458  early_stopping: 2/20 0.98495
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:07 val_accuracy: 0.98428  early_stopping: 3/20 0.98495
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:10 val_accuracy: 0.98499  early_stopping: 0/20 0.98499
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:04 val_accuracy: 0.98551  early_stopping: 0/20 0.98551
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:53 val_accuracy: 0.98430  early_stopping: 1/20 0.98551
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:13 val_accuracy: 0.98513  early_stopping: 2/20 0.98551
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:06 val_accuracy: 0.98447  early_stopping: 3/20 0.98551
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:54 val_accuracy: 0.98555  early_stopping: 0/20 0.98555
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:42 val_accuracy: 0.98514  early_stopping: 1/20 0.98555
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:14 val_accuracy: 0.98536  early_stopping: 2/20 0.98555
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:29 val_accuracy: 0.98482  early_stopping: 3/20 0.98555
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:03 val_accuracy: 0.98423  early_stopping: 4/20 0.98555
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:55 val_accuracy: 0.98496  early_stopping: 5/20 0.98555
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:38 val_accuracy: 0.98544  early_stopping: 6/20 0.98555
stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:47 val_accuracy: 0.98554  early_stopping: 7/20 0.98555
stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:13 val_accuracy: 0.98510  early_stopping: 8/20 0.98555
stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:29 val_accuracy: 0.98523  early_stopping: 9/20 0.98555
stage 31/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:51 val_accuracy: 0.98474  early_stopping: 10/20 0.98555
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:54 val_accuracy: 0.98462  early_stopping: 11/20 0.98555
stage 33/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:14 val_accuracy: 0.98568  early_stopping: 0/20 0.98568
stage 34/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:29 val_accuracy: 0.98521  early_stopping: 1/20 0.98568
stage 35/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:16 val_accuracy: 0.98524  early_stopping: 2/20 0.98568
stage 36/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:32 val_accuracy: 0.98502  early_stopping: 3/20 0.98568
stage 37/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:56 val_accuracy: 0.98427  early_stopping: 4/20 0.98568
stage 38/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:31 val_accuracy: 0.98456  early_stopping: 5/20 0.98568
stage 39/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:42 val_accuracy: 0.98524  early_stopping: 6/20 0.98568
stage 40/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:55 val_accuracy: 0.98552  early_stopping: 7/20 0.98568
stage 41/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:08 val_accuracy: 0.98525  early_stopping: 8/20 0.98568
stage 42/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:17 val_accuracy: 0.98563  early_stopping: 9/20 0.98568
stage 43/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:08 val_accuracy: 0.98507  early_stopping: 10/20 0.98568
stage 44/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:22 val_accuracy: 0.98513  early_stopping: 11/20 0.98568
stage 45/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:54 val_accuracy: 0.98502  early_stopping: 12/20 0.98568
stage 46/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:55 val_accuracy: 0.98499  early_stopping: 13/20 0.98568
stage 47/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:37 val_accuracy: 0.98489  early_stopping: 14/20 0.98568
stage 48/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:17 val_accuracy: 0.98521  early_stopping: 15/20 0.98568
stage 49/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:44 val_accuracy: 0.98497  early_stopping: 16/20 0.98568
stage 50/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:51 val_accuracy: 0.98511  early_stopping: 17/20 0.98568
stage 51/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:21 val_accuracy: 0.98438  early_stopping: 18/20 0.98568
stage 52/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:50 val_accuracy: 0.98581  early_stopping: 0/20 0.98581
stage 53/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:09 val_accuracy: 0.98514  early_stopping: 1/20 0.98581
stage 54/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:51 val_accuracy: 0.98528  early_stopping: 2/20 0.98581
stage 55/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:27 val_accuracy: 0.98537  early_stopping: 3/20 0.98581
stage 56/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:52 val_accuracy: 0.98514  early_stopping: 4/20 0.98581
stage 57/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:11 val_accuracy: 0.98447  early_stopping: 5/20 0.98581
stage 58/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:48 val_accuracy: 0.98503  early_stopping: 6/20 0.98581
stage 59/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:53 val_accuracy: 0.98478  early_stopping: 7/20 0.98581
stage 60/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:02 val_accuracy: 0.98477  early_stopping: 8/20 0.98581
stage 61/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:18 val_accuracy: 0.98538  early_stopping: 9/20 0.98581
stage 62/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:01 val_accuracy: 0.98488  early_stopping: 10/20 0.98581
stage 63/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:41 val_accuracy: 0.98533  early_stopping: 11/20 0.98581
stage 64/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:34:45 val_accuracy: 0.98488  early_stopping: 12/20 0.98581
stage 65/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:35:07 val_accuracy: 0.98522  early_stopping: 13/20 0.98581
stage 66/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:16 val_accuracy: 0.98546  early_stopping: 14/20 0.98581
stage 67/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:55 val_accuracy: 0.98497  early_stopping: 15/20 0.98581
stage 68/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:01 val_accuracy: 0.98494  early_stopping: 16/20 0.98581
stage 69/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:33:13 val_accuracy: 0.98489  early_stopping: 17/20 0.98581
stage 70/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:51 val_accuracy: 0.98577  early_stopping: 18/20 0.98581
stage 71/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:31:54 val_accuracy: 0.98463  early_stopping: 19/20 0.98581
stage 72/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58692/58692 0:00:00 1:32:24 val_accuracy: 0.98452  early_stopping: 20/20 0.98581
Moving best model austriannewspapers_52.mlmodel (0.9858119487762451) to austriannewspapers_best.mlmodel

real    6813m24.688s
user    15739m27.931s
sys     26308m35.655s

(venv3.9) stweil@ocr-02:~/src/github/UB-Mannheim/AustrianNewspapers$ ls -lt
total 1173956
-rw-r--r-- 1 stweil stweil 16243476 May 25 14:54 austriannewspapers_best.mlmodel
-rw-r--r-- 1 stweil stweil 16244093 May 25 14:54 austriannewspapers_72.mlmodel
-rw-r--r-- 1 stweil stweil 16244062 May 25 13:22 austriannewspapers_71.mlmodel
[...]
-rw-r--r-- 1 stweil stweil      752 May 20 21:14 list.eval
-rw-r--r-- 1 stweil stweil     8274 May 20 21:14 list.train
drwxr-xr-x 1 stweil stweil       66 May 20 21:13 venv3.9
drwxr-xr-x 1 stweil stweil       18 May 20 21:12 gt
drwxr-xr-x 1 stweil stweil     1240 May 20 21:12 ValidationSet_ONB_Newseye_GT_M1+
drwxr-xr-x 1 stweil stweil    14152 May 20 21:12 TrainingSet_ONB_Newseye_GT_M1+
-rw-r--r-- 1 stweil stweil     2372 May 20 21:12 README.md

Training with AustrianNewspapers 2.0

Training with GPU (NVidia RTX A5000, 24 GiB RAM) – 2023-04-26, ocr-02

GPU Load 15...35 %, GPU Memory 2.8 GiB, time / epoch 1:25 h

# Prepare the training.
cd data
ls TrainingSet_ONB_Newseye_GT_M1+/GT-PAGE/*xml >list.train
ls ValidationSet_ONB_Newseye_GT_M1+/GT-PAGE/*xml >list.eval
(venv-3.9) stweil@ocr-02:~/src/github/UB-Mannheim/AustrianNewspapers/data$ time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --lag 20 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
[04/26/23 20:47:35] WARNING  alphabet mismatch: chars in training set only: {'Ε›', 'Ε™', 'β–‘', 'Β³', '⁹', 'Γ΄', 'Ε ', '●', 'Γͺ', 'β‚‚', 'Γ»', '⁰', 'ΕΎ', '#', '₁', 'Γ±', 'βΈ«', '₉', '⁢', 'Γ«', 'β…™', 'Γ²', '⁸', train.py:386
                             'Γ’', 'È', 'βœ•', 'Λ’', 'β‚€', 'β…š', 'β–³', 'β– ', '"', 'β…•', '₇', '✀', 'β…“', 'β—―', 'Β±', 'Γ¦', 'Γ³', '’', 'Γ”', 'Ε‘', 'β˜…', '₃', 'β‚…', '†', 'Γ‰', 'ΒΉ', 'β‰…', 'β…–', 'β—‹', 'β—Ό', '⁷', 'β…”',                
                             '⁴', 'β‚ˆ', 'β‚„', '⅐', '⁄', 'β€š', '₆', 'β–²', '⬀', 'Β°', 'β€˜', '⁡'} (not included in accuracy test during training)                                                                    
                    WARNING  alphabet mismatch: chars in validation set only: {'ō'} (not trained)                                                                                               train.py:390
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
You are using a CUDA device ('NVIDIA RTX A5000') that has Tensor Cores. To properly utilize them, you should set `torch.set_float32_matmul_precision('medium' | 'high')` which will trade-off precision for performance. For more details, read https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html#torch.set_float32_matmul_precision
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃    ┃ Name      ┃ Type                     ┃ Params ┃                 In sizes ┃                Out sizes ┃
┑━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
β”‚ 0  β”‚ val_cer   β”‚ CharErrorRate            β”‚      0 β”‚                        ? β”‚                        ? β”‚
β”‚ 1  β”‚ val_wer   β”‚ WordErrorRate            β”‚      0 β”‚                        ? β”‚                        ? β”‚
β”‚ 2  β”‚ net       β”‚ MultiParamSequential     β”‚  4.1 M β”‚  [[1, 1, 120, 400], '?'] β”‚   [[1, 187, 1, 50], '?'] β”‚
β”‚ 3  β”‚ net.C_0   β”‚ ActConv2D                β”‚  1.3 K β”‚  [[1, 1, 120, 400], '?'] β”‚ [[1, 32, 120, 400], '?'] β”‚
β”‚ 4  β”‚ net.Do_1  β”‚ Dropout                  β”‚      0 β”‚ [[1, 32, 120, 400], '?'] β”‚ [[1, 32, 120, 400], '?'] β”‚
β”‚ 5  β”‚ net.Mp_2  β”‚ MaxPool                  β”‚      0 β”‚ [[1, 32, 120, 400], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 6  β”‚ net.C_3   β”‚ ActConv2D                β”‚ 40.0 K β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 7  β”‚ net.Do_4  β”‚ Dropout                  β”‚      0 β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 8  β”‚ net.Mp_5  β”‚ MaxPool                  β”‚      0 β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 30, 100], '?'] β”‚
β”‚ 9  β”‚ net.C_6   β”‚ ActConv2D                β”‚ 55.4 K β”‚  [[1, 32, 30, 100], '?'] β”‚  [[1, 64, 30, 100], '?'] β”‚
β”‚ 10 β”‚ net.Do_7  β”‚ Dropout                  β”‚      0 β”‚  [[1, 64, 30, 100], '?'] β”‚  [[1, 64, 30, 100], '?'] β”‚
β”‚ 11 β”‚ net.Mp_8  β”‚ MaxPool                  β”‚      0 β”‚  [[1, 64, 30, 100], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 12 β”‚ net.C_9   β”‚ ActConv2D                β”‚  110 K β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 13 β”‚ net.Do_10 β”‚ Dropout                  β”‚      0 β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 14 β”‚ net.S_11  β”‚ Reshape                  β”‚      0 β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 960, 1, 50], '?'] β”‚
β”‚ 15 β”‚ net.L_12  β”‚ TransposedSummarizingRNN β”‚  1.9 M β”‚   [[1, 960, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 16 β”‚ net.Do_13 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 17 β”‚ net.L_14  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 18 β”‚ net.Do_15 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 19 β”‚ net.L_16  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 20 β”‚ net.Do_17 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 21 β”‚ net.O_18  β”‚ LinSoftmax               β”‚ 75.0 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 187, 1, 50], '?'] β”‚
β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Trainable params: 4.1 M                                                                                                                                                                                     
Non-trainable params: 0                                                                                                                                                                                     
Total params: 4.1 M                                                                                                                                                                                         
Total estimated model params size (MB): 16                                                                                                                                                                  
stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:07 β€’ 0:00:00 10.54it/s val_accuracy: 0.977 val_word_accuracy: 0.883  early_stopping: 0/20 0.97716
stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:36 β€’ 0:00:00 10.90it/s val_accuracy: 0.986 val_word_accuracy: 0.925  early_stopping: 0/20 0.98556
stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:22:47 β€’ 0:00:00 11.03it/s val_accuracy: 0.988 val_word_accuracy: 0.934  early_stopping: 0/20 0.98769
stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:07 β€’ 0:00:00 11.29it/s val_accuracy: 0.989 val_word_accuracy: 0.942  early_stopping: 0/20 0.98904
stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:11 β€’ 0:00:00 11.24it/s val_accuracy: 0.99 val_word_accuracy: 0.945  early_stopping: 0/20 0.98967
stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:07 β€’ 0:00:00 11.09it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 0/20 0.99075
stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:34 β€’ 0:00:00 10.94it/s val_accuracy: 0.991 val_word_accuracy: 0.949  early_stopping: 1/20 0.99075
stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:07 β€’ 0:00:00 10.87it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 0/20 0.99085
stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:08 β€’ 0:00:00 11.27it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 0/20 0.99123
stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:07 β€’ 0:00:00 10.54it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 1/20 0.99123
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:54 β€’ 0:00:00 10.69it/s val_accuracy: 0.992 val_word_accuracy: 0.953  early_stopping: 0/20 0.99153
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:10 β€’ 0:00:00 10.50it/s val_accuracy: 0.991 val_word_accuracy: 0.949  early_stopping: 1/20 0.99153
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:01 β€’ 0:00:00 10.85it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 0/20 0.99186
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:22:50 β€’ 0:00:00 10.96it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 0/20 0.99196
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:33 β€’ 0:00:00 11.27it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 0/20 0.99211
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:08 β€’ 0:00:00 10.95it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 1/20 0.99211
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:38 β€’ 0:00:00 10.85it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 2/20 0.99211
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:43 β€’ 0:00:00 11.50it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 3/20 0.99211
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:36 β€’ 0:00:00 10.88it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99212
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:29 β€’ 0:00:00 10.67it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 1/20 0.99212
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:11 β€’ 0:00:00 10.77it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 2/20 0.99212
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:22:50 β€’ 0:00:00 11.19it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 3/20 0.99212
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:31 β€’ 0:00:00 11.10it/s val_accuracy: 0.992 val_word_accuracy: 0.954  early_stopping: 4/20 0.99212
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:48 β€’ 0:00:00 10.48it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 5/20 0.99212
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:35 β€’ 0:00:00 10.66it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 6/20 0.99212
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:24 β€’ 0:00:00 11.17it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 7/20 0.99212
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:17 β€’ 0:00:00 11.05it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99222
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:35 β€’ 0:00:00 10.88it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99231
stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:48 β€’ 0:00:00 10.80it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99234
stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:05 β€’ 0:00:00 10.91it/s val_accuracy: 0.993 val_word_accuracy: 0.959  early_stopping: 0/20 0.99251
stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:30 β€’ 0:00:00 10.88it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 1/20 0.99251
stage 31/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:32 β€’ 0:00:00 11.01it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 3/20 0.99251
stage 33/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:46 β€’ 0:00:00 10.72it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 4/20 0.99251
stage 34/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:01 β€’ 0:00:00 10.81it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 5/20 0.99251
stage 35/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:07 β€’ 0:00:00 10.94it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 6/20 0.99251
stage 36/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:12 β€’ 0:00:00 11.16it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 7/20 0.99251
stage 37/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:28 β€’ 0:00:00 10.81it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 8/20 0.99251
stage 38/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:16 β€’ 0:00:00 11.09it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 8/20 0.99251
Validation ━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━━━━━━━━━━ 2088/5016   0:03:11 β€’ 0:04:37 10.58it/s                                               early_stopping: 8/20 0.99251
stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:08 β€’ 0:00:00 11.27it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 0/20 0.99123
stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:07 β€’ 0:00:00 10.54it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 1/20 0.99123
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:54 β€’ 0:00:00 10.69it/s val_accuracy: 0.992 val_word_accuracy: 0.953  early_stopping: 0/20 0.99153
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:10 β€’ 0:00:00 10.50it/s val_accuracy: 0.991 val_word_accuracy: 0.949  early_stopping: 1/20 0.99153
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:01 β€’ 0:00:00 10.85it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 0/20 0.99186
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:22:50 β€’ 0:00:00 10.96it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 0/20 0.99196
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:33 β€’ 0:00:00 11.27it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 0/20 0.99211
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:08 β€’ 0:00:00 10.95it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 1/20 0.99211
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:38 β€’ 0:00:00 10.85it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 2/20 0.99211
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:43 β€’ 0:00:00 11.50it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 3/20 0.99211
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:36 β€’ 0:00:00 10.88it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99212
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:29 β€’ 0:00:00 10.67it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 1/20 0.99212
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:11 β€’ 0:00:00 10.77it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 2/20 0.99212
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:22:50 β€’ 0:00:00 11.19it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 3/20 0.99212
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:31 β€’ 0:00:00 11.10it/s val_accuracy: 0.992 val_word_accuracy: 0.954  early_stopping: 4/20 0.99212
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:48 β€’ 0:00:00 10.48it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 5/20 0.99212
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:35 β€’ 0:00:00 10.66it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 6/20 0.99212
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:24 β€’ 0:00:00 11.17it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 7/20 0.99212
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:17 β€’ 0:00:00 11.05it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99222
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:35 β€’ 0:00:00 10.88it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99231
stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:48 β€’ 0:00:00 10.80it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/20 0.99234
stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:05 β€’ 0:00:00 10.91it/s val_accuracy: 0.993 val_word_accuracy: 0.959  early_stopping: 0/20 0.99251
stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:30 β€’ 0:00:00 10.88it/s val_accuracy: 0.991 val_word_accuracy: 0.95  early_stopping: 1/20 0.99251
stage 31/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:32 β€’ 0:00:00 11.01it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 2/20 0.99251
stage 32/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:30 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 3/20 0.99251
stage 33/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:46 β€’ 0:00:00 10.72it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 4/20 0.99251
stage 34/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:25:01 β€’ 0:00:00 10.81it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 5/20 0.99251
stage 35/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:07 β€’ 0:00:00 10.94it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 6/20 0.99251
stage 36/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:12 β€’ 0:00:00 11.16it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 7/20 0.99251
stage 37/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:28 β€’ 0:00:00 10.81it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 8/20 0.99251
stage 38/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:16 β€’ 0:00:00 11.09it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 8/20 0.99251
stage 38/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:16 β€’ 0:00:00 11.09it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 9/20 0.99251
stage 39/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 285/54824 0:00:25 β€’ 1:22:19 11.04it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 9/20 0.99251
stage 39/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:12 β€’ 0:00:00 11.19it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 10/20 0.99251
stage 40/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:32 β€’ 0:00:00 11.03it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 11/20 0.99251
stage 41/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:20 β€’ 0:00:00 11.11it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 12/20 0.99251
stage 42/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:45 β€’ 0:00:00 10.41it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 13/20 0.99251
stage 43/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:24:08 β€’ 0:00:00 11.05it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 14/20 0.99251
stage 44/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:31 β€’ 0:00:00 10.99it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 15/20 0.99251
stage 45/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:38 β€’ 0:00:00 10.97it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 16/20 0.99251
stage 46/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:28 β€’ 0:00:00 10.68it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 17/20 0.99251
stage 47/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:18 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 17/20 0.99251
Validation ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╺━━━━━━━━━ 3816/5016   0:05:47 β€’ 0:01:57 10.26it/s                                               early_stopping: 17/20 0.99251
stage 47/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:18 β€’ 0:00:00 10.78it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 18/20 0.99251
stage 48/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:18 β€’ 0:00:00 10.92it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 19/20 0.99251
stage 49/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:23:26 β€’ 0:00:00 10.95it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 20/20 0.99251
Moving best model austriannewspapers_29.mlmodel (0.9925086498260498) to austriannewspapers_best.mlmodel

real    4554m17,818s
user    11489m52,859s
sys     18042m2,729s

ocr-01, decomposed GT

(venv3.9) stweil@ocr-01:~/src/github/UB-Mannheim/AustrianNewspapers/data$ time nice ketos train -f page -t list.train -e list.eval -o austriannewspapers -d cuda:0 --lag 10 -r 0.0001 -B 1 -w 0 -s '[1,120,0,1 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,13,32 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 Mp2,2 Cr3,9,64 Do0.1,2 S1(1x0)1,3 Lbx200 Do0.1,2 Lbx200 Do.1,2 Lbx200 Do]'
scikit-learn version 1.2.2 is not supported. Minimum required version: 0.17. Maximum required version: 1.1.2. Disabling scikit-learn conversion API.
[04/29/23 20:44:52] WARNING  alphabet mismatch: chars in training set only: {'₇', '⁷', '"', '₉', 'β–‘', 'β‚ˆ', 'β€š', 'βΈ«', '⁴', '⁡', '₃', 'β€˜', '₁', '#', 'ΒΉ', 'β‚€', 'β—―', '†', 'Μ‹', '⁹', '’', 'Μ‚', 'β—Ό', 'β‚…', 'Β³',   train.py:387
                             'β‰…', 'β‚„', 'β˜…', 'Γ¦', '⬀', '⁢', '●', 'Λ’', 'βœ•', '✀', 'β‚‚', '₆', 'Β°', 'β–³', '⁰', '⁸', 'Μƒ', 'β– ', 'Β±', 'β–²', 'β—‹'} (not included in accuracy test during training)                                  
                    WARNING  alphabet mismatch: chars in validation set only: {'Μ„'} (not trained)                                                                                                          train.py:391
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
IPU available: False, using: 0 IPUs
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃    ┃ Name      ┃ Type                     ┃ Params ┃                 In sizes ┃                Out sizes ┃
┑━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩
β”‚ 0  β”‚ val_cer   β”‚ CharErrorRate            β”‚      0 β”‚                        ? β”‚                        ? β”‚
β”‚ 1  β”‚ val_wer   β”‚ WordErrorRate            β”‚      0 β”‚                        ? β”‚                        ? β”‚
β”‚ 2  β”‚ net       β”‚ MultiParamSequential     β”‚  4.1 M β”‚  [[1, 1, 120, 400], '?'] β”‚   [[1, 152, 1, 50], '?'] β”‚
β”‚ 3  β”‚ net.C_0   β”‚ ActConv2D                β”‚  1.3 K β”‚  [[1, 1, 120, 400], '?'] β”‚ [[1, 32, 120, 400], '?'] β”‚
β”‚ 4  β”‚ net.Do_1  β”‚ Dropout                  β”‚      0 β”‚ [[1, 32, 120, 400], '?'] β”‚ [[1, 32, 120, 400], '?'] β”‚
β”‚ 5  β”‚ net.Mp_2  β”‚ MaxPool                  β”‚      0 β”‚ [[1, 32, 120, 400], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 6  β”‚ net.C_3   β”‚ ActConv2D                β”‚ 40.0 K β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 7  β”‚ net.Do_4  β”‚ Dropout                  β”‚      0 β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 60, 200], '?'] β”‚
β”‚ 8  β”‚ net.Mp_5  β”‚ MaxPool                  β”‚      0 β”‚  [[1, 32, 60, 200], '?'] β”‚  [[1, 32, 30, 100], '?'] β”‚
β”‚ 9  β”‚ net.C_6   β”‚ ActConv2D                β”‚ 55.4 K β”‚  [[1, 32, 30, 100], '?'] β”‚  [[1, 64, 30, 100], '?'] β”‚
β”‚ 10 β”‚ net.Do_7  β”‚ Dropout                  β”‚      0 β”‚  [[1, 64, 30, 100], '?'] β”‚  [[1, 64, 30, 100], '?'] β”‚
β”‚ 11 β”‚ net.Mp_8  β”‚ MaxPool                  β”‚      0 β”‚  [[1, 64, 30, 100], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 12 β”‚ net.C_9   β”‚ ActConv2D                β”‚  110 K β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 13 β”‚ net.Do_10 β”‚ Dropout                  β”‚      0 β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 64, 15, 50], '?'] β”‚
β”‚ 14 β”‚ net.S_11  β”‚ Reshape                  β”‚      0 β”‚   [[1, 64, 15, 50], '?'] β”‚   [[1, 960, 1, 50], '?'] β”‚
β”‚ 15 β”‚ net.L_12  β”‚ TransposedSummarizingRNN β”‚  1.9 M β”‚   [[1, 960, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 16 β”‚ net.Do_13 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 17 β”‚ net.L_14  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 18 β”‚ net.Do_15 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 19 β”‚ net.L_16  β”‚ TransposedSummarizingRNN β”‚  963 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 20 β”‚ net.Do_17 β”‚ Dropout                  β”‚      0 β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 400, 1, 50], '?'] β”‚
β”‚ 21 β”‚ net.O_18  β”‚ LinSoftmax               β”‚ 61.0 K β”‚   [[1, 400, 1, 50], '?'] β”‚   [[1, 152, 1, 50], '?'] β”‚
β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
Trainable params: 4.1 M                                                                                                                                                                                               Non-trainable params: 0                                                                                                                                                                                               
Total params: 4.1 M                                                                                                                                                                                                   Total estimated model params size (MB): 16                                                                                                                                                                            
stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:38:07 β€’ 0:00:00 9.71it/s val_accuracy: 0.981 val_word_accuracy: 0.901  early_stopping: 0/10 0.98058
stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:39:17 β€’ 0:00:00 9.45it/s val_accuracy: 0.987 val_word_accuracy: 0.93  early_stopping: 0/10 0.98672
stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:38:26 β€’ 0:00:00 9.37it/s val_accuracy: 0.988 val_word_accuracy: 0.935  early_stopping: 0/10 0.98786
stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:35 β€’ 0:00:00 9.84it/s val_accuracy: 0.99 val_word_accuracy: 0.945  early_stopping: 0/10 0.98961
stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:29 β€’ 0:00:00 9.64it/s val_accuracy: 0.99 val_word_accuracy: 0.945  early_stopping: 0/10 0.98998
stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:36 β€’ 0:00:00 9.74it/s val_accuracy: 0.99 val_word_accuracy: 0.946  early_stopping: 0/10 0.99007
stage 6/∞  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:40 β€’ 0:00:00 9.34it/s  val_accuracy: 0.99 val_word_accuracy: 0.946  early_stopping: 0/10 0.99007
Validation ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━ 4455/5016   0:07:39 β€’ 0:00:42 13.42it/s                                              early_stopping: 0/10 0.99007
stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:40 β€’ 0:00:00 9.34it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 0/10 0.99119
stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:40 β€’ 0:00:00 9.34it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 0/10 0.99119
stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━╸━━━━━━━━━━━━━━ 35158/54824 1:01:37 β€’ 0:33:24 9.81it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 0/10 0.99119
stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:58 β€’ 0:00:00 9.30it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 0/10 0.99141
stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:55 β€’ 0:00:00 9.30it/s val_accuracy: 0.992 val_word_accuracy: 0.953  early_stopping: 0/10 0.99152
stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:56 β€’ 0:00:00 9.53it/s val_accuracy: 0.991 val_word_accuracy: 0.954  early_stopping: 1/10 0.99152
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:57 β€’ 0:00:00 9.32it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 0/10 0.99179
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:44 β€’ 0:00:00 9.38it/s val_accuracy: 0.992 val_word_accuracy: 0.954  early_stopping: 1/10 0.99179
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:44 β€’ 0:00:00 9.64it/s val_accuracy: 0.991 val_word_accuracy: 0.954  early_stopping: 2/10 0.99179
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:38 β€’ 0:00:00 9.27it/s val_accuracy: 0.992 val_word_accuracy: 0.954  early_stopping: 3/10 0.99179
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:36:05 β€’ 0:00:00 9.44it/s val_accuracy: 0.992 val_word_accuracy: 0.955  early_stopping: 4/10 0.99179
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:33 β€’ 0:00:00 9.56it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 0/10 0.99210
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:31 β€’ 0:00:00 9.66it/s val_accuracy: 0.992 val_word_accuracy: 0.953  early_stopping: 1/10 0.99210
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:36:24 β€’ 0:00:00 9.34it/s val_accuracy: 0.992 val_word_accuracy: 0.958  early_stopping: 0/10 0.99245
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:13 β€’ 0:00:00 9.51it/s val_accuracy: 0.988 val_word_accuracy: 0.941  early_stopping: 1/10 0.99245
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:30 β€’ 0:00:00 9.50it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 2/10 0.99245
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:42 β€’ 0:00:00 9.46it/s val_accuracy: 0.991 val_word_accuracy: 0.952  early_stopping: 3/10 0.99245
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:08 β€’ 0:00:00 9.26it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 4/10 0.99245
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:38:57 β€’ 0:00:00 9.55it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 5/10 0.99245
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:36:53 β€’ 0:00:00 9.41it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 6/10 0.99245
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:36:03 β€’ 0:00:00 9.63it/s val_accuracy: 0.992 val_word_accuracy: 0.956  early_stopping: 7/10 0.99245
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:15 β€’ 0:00:00 9.62it/s val_accuracy: 0.992 val_word_accuracy: 0.954  early_stopping: 8/10 0.99245
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:37:13 β€’ 0:00:00 9.29it/s val_accuracy: 0.991 val_word_accuracy: 0.953  early_stopping: 9/10 0.99245
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54824/54824 1:35:23 β€’ 0:00:00 9.64it/s val_accuracy: 0.992 val_word_accuracy: 0.957  early_stopping: 10/10 0.99245
Moving best model austriannewspapers_17.mlmodel (0.992448091506958) to austriannewspapers_best.mlmodel

real    2939m36.702s
user    7959m30.528s
sys     13192m38.440s
⚠️ **GitHub.com Fallback** ⚠️