Line profiles - Trovemaster/exocross GitHub Wiki

Doppler

Example

 temperature 2000.0 
 absorption
 Doppler

Gaussian

Example

 temperature 2000.0 
 absorption
 gaussian
 hwhm .321

Voigt

Example

 temperature 2000.0 
 absorption
 voigt
 hwhm .321
 mass 16.0313
 offset 25 (cm-1)

Lorentzian

Example

 temperature 2000.0 
 absorption
 lorentzian
 hwhm .321
 offset 25 (cm-1)

Pseudo-Voigt

(see https://en.wikipedia.org/wiki/Voigt_profile)

The Pseudo-Voigt Profile (or Pseudo-Voigt Function) is an approximation of the Voigt Profile V(x), using a linear combination of a Gaussian curve G(x) and a Lorentzian curve L(x) instead of their convolution.

The Pseudo-Voigt Function is often used for calculations of experimental Spectral line shape profiles.

The mathematical definition of the normalized Pseudo-Voigt profile is given by: V_p(x)= \eta \cdot L(x) + (1-\eta) \cdot G(x) with 0 < \eta < 1 There is several possible choices for the \eta parameter. A simple formula, accurate to 1%, is: \eta = 1.36603 (f_L/f) - 0.47719 (f_L/f)^2 + 0.11116(f_L/f)^3 where f = [f_G^5 + 2.69269 f_G^4 f_L + 2.42843 f_G^3 f_L^2 + 4.47163 f_G^2 f_L^3 + 0.07842 f_G f_L^4 + f_L^5]^{1/5}

Example

 absorption
 pseudo
 hwhm .321
 mass 16.0313
 offset 25 (cm-1)

Pseudo-Liu

Liu_Lin_JOptSocAmB_2001

Example

 absorption
 pseudo-Liu
 hwhm .321
 mass 16.0313
 offset 25 (cm-1)

Pseudo-Rocco

Rocco_Cruzado_ActaPhysPol_2012

Example

 absorption
 pseudo-Rocco
 hwhm .321
 mass 16.0313
 offset 25 (cm-1)

Voigt-parameters

Species or Broadener starts a section to define the Voigt-type broadening parameters

 gamma(Voigt) = \sum_i gamma_i (T0_i/T)^n P/P0_i ratio_i 

The keywords are: gamma or gamma0 is the reference HWHM (cm-1), n is the exponent n_i, T0 is the reference T (K),usually 298, P0 is the reference pressure in bar, usually 1, ratio is the mixing ratio of the species (unitless), for example the solar mixing ratio of H2 and He is 0.9 and 0.1.

The name of the species should be the first thing on the line.

The pressure value in bar must be specified (otherwise P=1 bar is assumed).

The effective molar mass of the molecule/atom mass be specified (1.0 is the default).

Example

 mass 16.0
 pressure 0.5 
 Temperature 1300.0 
 Species
   H2  gamma 0.05 n 0.4 t0 298.0 ratio 0.9
   He  gamma 0.04 n 1.0 t0 298.0 ratio 0.1
 end

A J-dependent set of broadening parameters can be provided in an external file, e.g.

 mass 16.0
 pressure 0.5 
 Temperature 1300.0 

 species 
   H2  gamma 0.0207 n 0.44 t0 298.0 file 1H2-16O__H2.broad model JJ ratio 0.84
   He  gamma 0.043  n 0.02 t0 298.0 file  1H2-16O__He.broad model JJ ratio 0.16
 end

where file is the filename with parameters and JJ (alias a1) is the name of the model. Two models are available: J (or a0) and JJ (or a1), which stand for the broadening dependent on the lower only and the lower/upper Js.

The broadening file has the following structure

 0.0145 0.500       0       1
 0.0156 0.417       1       2
 0.0164 0.350       2       3

where the first two columns are Voigt's gamma and n, and the last two are J" and J' (i.e. in the opposite to the conventional order). The values gamma and n in the species section are the default values in case of missing Js in the broadening file.

Voigt-Quad

Voigt-Quad is the Voigt obtained using the Guass-Hermite quadrature integrations. An analytical integration of the Lorentzian is used for the average contribution for each bin. The effect of the line truncation with offset parameter is folded back into the main part using the analytical expression. The line guarantees the area to conserve.

Example

 Temperature   500  (K)
 pressure 10. (bar)
 absorption
 Voigt-Quad
 mass 16.0313
 offset 25 (cm-1)
 nquad   20   (N quadrature points)
 
 Species
   H2  gamma 0.05 n 0.4 t0 298.0 ratio 0.9
   He  gamma 0.04 n 1.0 t0 298.0 ratio 0.1
 end