3.2 Android 消息机制 - TomeOkin/Learning-Notes GitHub Wiki

Android 消息机制

Android 的消息机制主要通过 Handler、MessageQueue、Looper 三者的相互作用实现的。这里,我们通过实例进行分析:

public class ThumbnailDownloader<T> extends HandlerThread {
    private static final String TAG = "ThumbnailDownloader";
    private static final int MESSAGE_DOWNLOAD = 0;

    Handler mHandler;
    Map<T, String> requestMap = Collections.synchronizedMap(new HashMap<T, String>());
    Handler mResponseHandler;
    Listener<T> mListener;

    public interface Listener<T> {
        void onThumbnailDownloaded(T target, Bitmap thumbnail);
    }

    public void setListener(Listener<T> listener) {
        mListener = listener;
    }

    public ThumbnailDownloader(Handler responseHandler) {
        super(TAG);
        mResponseHandler = responseHandler;
    }

    @Override
    protected void onLooperPrepared() {
        mHandler = new Handler() {
            @SuppressWarnings("unchecked")
            @Override
            public void handleMessage(Message msg) {
                if (msg.what == MESSAGE_DOWNLOAD) {
                    T target = (T)msg.obj;
                    Log.i(TAG, "Got a request for url: " + requestMap.get(target));
                    handleRequest(target);
                }
            }
        };
    }

    public void queueThumbnail(T target, String url) {
        Log.i(TAG, "Got an URL: " + url);
        requestMap.put(target, url);

        mHandler.obtainMessage(MESSAGE_DOWNLOAD, target)
                .sendToTarget();
    }

    private void handleRequest(final T target) {
        try {
            final String url = requestMap.get(target);
            if (target == null) {
                return;
            }

            byte[] bitmapBytes = new FlickrFetchr().getUrlBytes(url);
            final Bitmap bitmap = BitmapFactory.decodeByteArray(bitmapBytes, 0, bitmapBytes.length);
            Log.i(TAG, "Bitmap created");

            mResponseHandler.post(new Runnable() {
                @Override
                public void run() {
                    if (requestMap.get(target) != url) {
                        return;
                    }

                    requestMap.remove(target);
                    mListener.onThumbnailDownloaded(target, bitmap);
                }
            });

        } catch (IOException ioe) {
            Log.e(TAG, "Error downloading image", ioe);
        }
    }

    public void clearQueue() {
        mHandler.removeMessages(MESSAGE_DOWNLOAD);
        requestMap.clear();
    }
}

Handler 的创建

首先,Handler 的创建是有要求的。

public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
        final Class<? extends Handler> klass = getClass();
        if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                (klass.getModifiers() & Modifier.STATIC) == 0) {
            Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                klass.getCanonicalName());
        }
    }

    mLooper = Looper.myLooper();
    if (mLooper == null) {
        throw new RuntimeException(
            "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
}
  1. 如果 Handler 实现类以内部类进行声明,那么它有可能会导致外部类不会被垃圾回收。这里,有两种情况:
  • 如果 Handler 是在其他线程中使用 Looper 或者 MessageQueue,那么这是不会有问题的;
  • 然而如果 Handler 是在主线程中使用 Looper 或者 MessageQueue,那就需要注意了。为了防止发生内存泄漏,需要将 Handler 实现类定义为静态类,并且在外部类中,使用 WeakReference 来存放 Handler 实例,Handler 实现类中对所有外部类成员的引用也都必须使用弱引用。这是因为主线程会先初始化好一个消息队列,因此该消息队列的存活的作用域包含了 Handler 所处环境的的上下文及其他的部分。而在其他的线程中,消息队列需要我们手动创建,消息队列的存活的作用域与 Handler 所处环境的的上下文是一样的,自然就不会发送内存泄漏。举个例子,比如我们有一些管理类,我们希望它们不会发生内存泄漏,那就使用 Application 的上下文去关联,由于 Application 的上下文已经最大了,也就没有内存泄漏的说法了。
  1. 需要先创建消息队列才能创建 Handler,由于主线程已经存在消息队列了,因此直接就可以创建 Handler。
    同时,我们也看到在 HandlerThread 的 run() 方法:
@Override
public void run() {
    mTid = Process.myTid();
    Looper.prepare();
    synchronized (this) {
        mLooper = Looper.myLooper();
        notifyAll();
    }
    Process.setThreadPriority(mPriority);
    onLooperPrepared();
    Looper.loop();
    mTid = -1;
}

在使用 Looper.prepare(); 创建消息队列后,回调了方法 onLooperPrepared(),之后使用 Looper.loop(); 开始获取和处理消息。这就解释了为什么 mHandler 是在 onLooperPrepared() 中创建的。

消息队列的创建

Looper.prepare(); 方法负责创建消息队列,代码:

public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}
  1. 每一个 Looper 创建时,除了会存储当前线程的引用,还会创建一个新的 MessageQueue,并设置是否允许结束消息队列。可以看到,主线程的消息队列是不允许结束的。
public static void prepareMainLooper() {
    prepare(false);
    synchronized (Looper.class) {
        if (sMainLooper != null) {
            throw new IllegalStateException("The main Looper has already been prepared.");
        }
        sMainLooper = myLooper();
    }
}
  1. 创建好的 Looper 会存放在 ThreadLocal 中,这就意味着,每个线程都会有一个独立的副本。另外,每个线程都只能有一个 Looper。

loop()

当执行 Looper.loop(); 时,会先取出当前线程的消息队列,接着阻塞式地获取一个消息,只有当 queue.next() 的返回值为空,也即消息队列已经结束时才会退出。如果取出的消息不为空,则会通过 msg.target.dispatchMessage(msg) 进行消息的分发。这里 msg.target 指的是获取该 msgHandler。之后,消息会通过 msg.recycleUnchecked() 回收到消息池中。

public static @Nullable Looper myLooper() {
    return sThreadLocal.get();
}

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        msg.target.dispatchMessage(msg);

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

获取一个未使用的消息

不知是否从 msg.recycleUnchecked(); 中看出写什么端倪?为什么消息的回收是这样子的?难道消息池隐藏在 Message 之中?
这里要从消息的获取谈起。

我们一般是使用 mHandler.obtainMessage(MESSAGE_DOWNLOAD, object) 来获取一个消息的。

public final Message obtainMessage(int what, Object obj) {
    return Message.obtain(this, what, obj);
}

public static Message obtain(Handler h, int what, Object obj) {
    Message m = obtain();
    m.target = h;
    m.what = what;
    m.obj = obj;

    return m;
}

public static Message obtain() {
    synchronized (sPoolSync) {
        if (sPool != null) {
            Message m = sPool;
            sPool = m.next;
            m.next = null;
            m.flags = 0; // clear in-use flag
            sPoolSize--;
            return m;
        }
    }
    return new Message();
}

最终,消息从 Message obtain() 中获取的。第一次执行的时候,sPool 是空的,因此会构造一个新消息并返回。之后,如果我们有通过 Message.recycleUnchecked() 回收 Message,那么 sPool 就不为空了。

void recycleUnchecked() {
    // Mark the message as in use while it remains in the recycled object pool.
    // Clear out all other details.
    flags = FLAG_IN_USE;
    what = 0;
    arg1 = 0;
    arg2 = 0;
    obj = null;
    replyTo = null;
    sendingUid = -1;
    when = 0;
    target = null;
    callback = null;
    data = null;

    synchronized (sPoolSync) {
        if (sPoolSize < MAX_POOL_SIZE) {
            next = sPool;
            sPool = this;
            sPoolSize++;
        }
    }
}

如果 sPool 不为空,那么我们就会通过以下几句获得一个 Message。

Message m = sPool;
sPool = m.next;
m.next = null;

看出来了吧,实际上就是使用 Message.next 来关联 Message,通过堆栈的方式进行操作,由此组成了一个消息池。
消息池的大小默认是 50 个,回收时如果消息池满了,回收的 Message 就会清除引用后被丢弃。

消息的发送

在获取消息后,消息通过 Message 的 sendToTarget() 进行发送。

public void sendToTarget() {
    target.sendMessage(this);
}

// 以下为 Handler 类的方法

public final boolean sendMessage(Message msg) {
    return sendMessageDelayed(msg, 0);
}

public final boolean sendMessageDelayed(Message msg, long delayMillis) {
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

最终,消息通过 MessageQueue 的 enqueueMessage() 添加到消息队列中。

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

添加到消息队列的消息必须是未被使用过的。消息队列中的消息含有时间信息,该时间由 SystemClock.uptimeMillis() + delayMillis 构成的。

在 Android 中有三种获得当前时刻时间的方式,如下,前两种是 android.os 包中:

  • SystemClock.uptimeMillis():指的是从系统开机开始,到当前时刻的时间,但不包括深度睡眠的时间。
  • SystemClock.elapsedRealtime():指的是从系统开机开始,到当前时刻的时间,包括深度睡眠的时间。
  • System.currentTimeMillis():从 1970 年 1 月 1 日到现在的时间。

另外,AlarmManager 只支持 currentTimeMilliselapsedRealtime 这两种方式。
Thread.sleep(millis)Object.wait(millis)SystemClock.sleep(millis)Handler 都是使用 uptimeMills

从消息队列中获取消息

回到 MessageQueue.next(),由于消息队列是按执行的时间排序的,我们直接判断第一个消息是否可以开始执行了,如果不可以,则阻塞直到消息可以开始执行,返回该消息。

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }

        // Run the idle handlers.
        // We only ever reach this code block during the first iteration.
        for (int i = 0; i < pendingIdleHandlerCount; i++) {
            final IdleHandler idler = mPendingIdleHandlers[i];
            mPendingIdleHandlers[i] = null; // release the reference to the handler

            boolean keep = false;
            try {
                keep = idler.queueIdle();
            } catch (Throwable t) {
                Log.wtf(TAG, "IdleHandler threw exception", t);
            }

            if (!keep) {
                synchronized (this) {
                    mIdleHandlers.remove(idler);
                }
            }
        }

        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

消息的分发

消息的分发是通过 msg.target.dispatchMessage(msg);,注意到,消息是从当前线程的消息队列中取出的,也即在分发消息时,方法不再是在 Thread.start() 所开启的新线程中执行的,而是在 Handler 所创建的线程(虽然线程信息是存在于 Looper 中的,但在 Handler 创建时与 Looper 建立了关联)中执行的。当然,由于此处的 mHandler 是在 run() 中创建的,因此此处没有线程切换过程。而对于 mResponseHandler,由于其是在主线程中创建的,因此,在 mHandler 消费消息时,对 mResponseHandler 执行的调用最终分发消息时是在主线程中执行。

public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

当消息是使用 Handler.post(Runnable) 方式发出的,那么 msg.callback 就是该 Runnable。而如果在创建 Handler 时,使用了带 Callback 版本的方法创建,那么就对应与 mCallback

Looper 的常用方法

  • Looper.prepare()Looper.prepareMainLooper():创建消息队列的相关操作,需要在 Handler 创建前执行。
  • Looper.loop():消息队列的运作。
  • Looper.myLooper():获取当前线程的 Looper。
  • Looper.getMainLooper(): 获取主线程的 Looper。
  • Looper.myQueue():获取当前线程的消息队列。
  • looper.quit()looper.quitSafely():除主线程 Looper 不允许销毁外,其他线程的 Looper 在创建后需要手动销毁。我们通过该方法来间接销毁消息队列。

消息机制的整体流程

message theory wangjin

参考

《The Busy Coders Guide to Android Development》
《Android Programming:The Big Nerd Ranch Guide》
《Android 开发艺术探索》
Android中的时间:currentTimeMillis,uptimeMillis,elapsedRealtime
Android消息机制的原理剖析—闭环总结 文末的图片,为避免 csdn 屏蔽引用,转存了一份

⚠️ **GitHub.com Fallback** ⚠️