ResNet152V2_Chexpert_BCE_E10_B8 - TobiasSchmidtDE/DeepL-MedicalImaging GitHub Wiki

ResNet152V2_Chexpert_BCE_E10_B8

Version: 1

Trained ResNet152V2 architecture using the 'Chexpert BCE E10 B8' benchmark.The benchmark was initialized for the chexpert_full dataset with batch size of 8, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 10 epochs using the Adam optimizer and binary_crossentropy loss. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 142985 number of sample, the validation set 35749, and the test set 44680.

from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained ResNet152V2 architecture using the 'Chexpert BCE E10 B8' benchmark.

The benchmark was initialized for the chexpert_full dataset with batch size of 8, shuffel set to True and images rescaled to dimension (256, 256).


The training was done for 10 epochs using the Adam optimizer and binary_crossentropy loss.


A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 142985 number of sample, the validation set 35749, and the test set 44680.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                            precision    recall  f1-score   support

                No Finding       0.09      0.02      0.03      4506
Enlarged Cardiomediastinum       0.00      0.00      0.00      2152
              Cardiomegaly       0.11      0.02      0.04      5458
              Lung Opacity       0.47      0.45      0.46     20997
               Lung Lesion       0.00      0.00      0.00      1962
                     Edema       0.24      0.13      0.17     10679
             Consolidation       0.00      0.00      0.00      2913
                 Pneumonia       0.00      0.00      0.00      1251
               Atelectasis       0.00      0.00      0.00      6643
              Pneumothorax       0.10      0.01      0.02      3949
          Pleural Effusion       0.38      0.37      0.38     17209
             Pleural Other       0.00      0.00      0.00       679
                  Fracture       0.13      0.00      0.00      1945
           Support Devices       0.51      0.56      0.54     23037

                 micro avg       0.43      0.29      0.35    103380
                 macro avg       0.15      0.11      0.12    103380
              weighted avg       0.31      0.29      0.30    103380
               samples avg       0.33      0.27      0.26    103380

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.3126594126224518
Test AUC:  0.7159357070922852
Test Precision:  0.6541891098022461
Test Recall:  0.44426387548446655
Test F2Score:  0.4747315049171448
Test BinaryAccuracy:  0.8693411946296692

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'batch_size': 8,
    'benchmark_name': 'Chexpert BCE E10 B8',
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': True,
    'epochs': 10,
    'label_columns': [   'No Finding',
                         'Enlarged Cardiomediastinum',
                         'Cardiomegaly',
                         'Lung Opacity',
                         'Lung Lesion',
                         'Edema',
                         'Consolidation',
                         'Pneumonia',
                         'Atelectasis',
                         'Pneumothorax',
                         'Pleural Effusion',
                         'Pleural Other',
                         'Fracture',
                         'Support Devices'],
    'loss': 'binary_crossentropy',
    'metrics': ['AUC', 'Precision', 'Recall', 'F2Score', 'BinaryAccuracy'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'shuffle': True,
    'test_num_samples': 44680,
    'train_num_samples': 142985,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'valid_num_samples': 35749}

ResNet152V2_Chexpert_BCE_E10_B8

Version: 1

Trained ResNet152V2 architecture using the 'Chexpert BCE E10 B8' benchmark.The benchmark was initialized for the chexpert_full dataset with batch size of 8, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 10 epochs using the Adam optimizer and binary_crossentropy loss. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 142985 number of sample, the validation set 35749, and the test set 44680.

from pathlib import Path
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint

basepath = Path(os.getcwd())
if basepath.name != "idp-radio-1":
    os.chdir(basepath.parent.parent)
    print(os.getcwd())
load_dotenv(find_dotenv())

from src.preprocessing.split.train_test_split import train_test_split
/srv/idp-radio-1
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained ResNet152V2 architecture using the 'Chexpert BCE E10 B8' benchmark.

The benchmark was initialized for the chexpert_full dataset with batch size of 8, shuffel set to True and images rescaled to dimension (256, 256).


The training was done for 10 epochs using the Adam optimizer and binary_crossentropy loss.


A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 142985 number of sample, the validation set 35749, and the test set 44680.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                            precision    recall  f1-score   support

                No Finding       0.09      0.02      0.03      4506
Enlarged Cardiomediastinum       0.00      0.00      0.00      2152
              Cardiomegaly       0.11      0.02      0.04      5458
              Lung Opacity       0.47      0.45      0.46     20997
               Lung Lesion       0.00      0.00      0.00      1962
                     Edema       0.24      0.13      0.17     10679
             Consolidation       0.00      0.00      0.00      2913
                 Pneumonia       0.00      0.00      0.00      1251
               Atelectasis       0.00      0.00      0.00      6643
              Pneumothorax       0.10      0.01      0.02      3949
          Pleural Effusion       0.38      0.37      0.38     17209
             Pleural Other       0.00      0.00      0.00       679
                  Fracture       0.13      0.00      0.00      1945
           Support Devices       0.51      0.56      0.54     23037

                 micro avg       0.43      0.29      0.35    103380
                 macro avg       0.15      0.11      0.12    103380
              weighted avg       0.31      0.29      0.30    103380
               samples avg       0.33      0.27      0.26    103380

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.3126594126224518
Test AUC:  0.7159357070922852
Test Precision:  0.6541891098022461
Test Recall:  0.44426387548446655
Test F2Score:  0.4747315049171448
Test BinaryAccuracy:  0.8693411946296692

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'batch_size': 8,
    'benchmark_name': 'Chexpert BCE E10 B8',
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': True,
    'epochs': 10,
    'label_columns': [   'No Finding',
                         'Enlarged Cardiomediastinum',
                         'Cardiomegaly',
                         'Lung Opacity',
                         'Lung Lesion',
                         'Edema',
                         'Consolidation',
                         'Pneumonia',
                         'Atelectasis',
                         'Pneumothorax',
                         'Pleural Effusion',
                         'Pleural Other',
                         'Fracture',
                         'Support Devices'],
    'loss': 'binary_crossentropy',
    'metrics': ['AUC', 'Precision', 'Recall', 'F2Score', 'BinaryAccuracy'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'shuffle': True,
    'test_num_samples': 44680,
    'train_num_samples': 142985,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'valid_num_samples': 35749}

Data Distribution

if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    benchmark = data['benchmark']

    dataset_path = Path(benchmark['dataset_folder'])
    train_labels = benchmark['train_labels'] if 'train_labels' in benchmark.keys() else 'train.csv'
    split_test_size =  benchmark['split_test_size'] if 'split_test_size' in benchmark.keys() else 0.2
    split_valid_size =  benchmark['split_valid_size'] if 'split_valid_size' in benchmark.keys() else 0.2
    split_group = benchmark['split_group'] if 'split_group' in benchmark.keys() else 'patient_id'
    split_seed = benchmark['split_seed']

    all_labels = pd.read_csv(dataset_path / train_labels)
    train_labels, test_labels = train_test_split(all_labels, test_size=split_test_size, group=split_group, seed=split_seed)
    train_labels, validation_labels = train_test_split(train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
from src.datasets.u_encoding import uencode

def get_distribution(labels):
    if 'nan_replacement' in benchmark.keys():
        labels = labels.fillna(benchmark['nan_replacement'])
    data = labels.to_numpy()
    data = uencode(benchmark['u_enc'], data, unc_value=benchmark['unc_value'])
    data = pd.DataFrame(data, columns=labels.columns)

    labels = data[benchmark['label_columns']]

    d = {'Pathology': [], 'Positive': [], 'Positive %': [], 'Negative': [], 'Negative %': [],}
    for label in labels.columns:
        values = labels.groupby(label)
        d['Pathology'].append(label)

        positive = values.size()[1.0] if 1.0 in values.size() else 0
        positive_percent = positive / labels.shape[0] * 100
        d['Positive'].append(positive)
        d['Positive %'].append(round(positive_percent))

        negative = values.size()[-0.0] if -0.0 in values.size() else 0
        negative_percent = negative / labels.shape[0] * 100
        d['Negative'].append(negative)
        d['Negative %'].append(round(negative_percent))
    
    df = pd.DataFrame(d)
    df = df.set_index('Pathology')

    return df
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    train = get_distribution(train_labels)
    val = get_distribution(validation_labels)
    test = get_distribution(test_labels)
    
    positives = train[['Positive %']].merge(val[['Positive %']], left_index=True, right_index=True).merge(test[['Positive %']], left_index=True,  right_index=True).rename(columns={"Positive %_x": "Positives Train", "Positive %_y": "Positives Validation", "Positive %": "Positives Test", })
    positives.copy().plot(kind='bar', figsize=(10,7), title="Positive Labels Distribution")
    
    negatives = train[['Negative %']].merge(val[['Negative %']], left_index=True, right_index=True).merge(test[['Negative %']], left_index=True,  right_index=True).rename(columns={"Negative %_x": "Negative Train", "Negative %_y": "Negative Validation", "Negative %": "Negative Test", })
    negatives.copy().plot(kind='bar', figsize=(10,7), title="Negative Labels Distribution")

    train[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Training set")
    val[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Validation set")
    test[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Test set")
⚠️ **GitHub.com Fallback** ⚠️