Meeting 06.08.20 - TobiasSchmidtDE/DeepL-MedicalImaging GitHub Wiki

BigBlueButton Meeting Room

What happened so far

  • Infrastructure / Tensorboard
    • Add class based metrics to tensorboard for all metrics
    • fixed masked metrics
  • Preprocessing
  • Architecures
    • Masked Loss function
  • Model training
    • base TF: -> equal to ours
    • base pytorch: -> equal to ours
    • pytorch chexpert leadership top4 implementation
      • 5 classes: Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion
        • 320x320 without data augmentation: 2 Epochs: Auc : 0.828 0.899 0.888 0.839 0.915,Mean auc: 0.874
        • 256x256 3 Epochs: Auc : 0.770 0.926 0.900 0.826 0.929,Mean auc: 0.870
        • 320x320 3 Epochs: Auc : 0.795 0.929 0.905 0.810 0.931,Mean auc: 0.874
      • 12 classes: Enlarged Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung Lesion, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture
        • 320x320: Auc : 0.878 0.501 0.826 0.918 0.464 0.929 0.916 0.635 0.828 0.864 0.932 0.974,Mean auc: 0.806
    • chexpert dataset paper:
      • 5 classes: auc: 0.811, 0.840, 0.932, 0.929, 0.931
    • ensemble paper:
      • 5 classes: auc: 0.745, 0.813, 0.882, 0.921, 0.930
    • ours (trained on 63% of train data):
      • 12 classes (DenseNet121_Chexpert_BCE_E3_B32_C1_N12)
        • Mean auc: 0.723
Test auc_enlarged_cardiomediastinum:  0.6274955868721008
Test auc_cardiomegaly:  0.827772855758667
Test auc_lung_opacity:  0.70615553855896
Test auc_lung_lesion:  0.6908576488494873
Test auc_edema:  0.7949528694152832
Test auc_consolidation:  0.7065780758857727
Test auc_pneumonia:  0.6720331907272339
Test auc_atelectasis:  0.6417831778526306
Test auc_pneumothorax:  0.7809439301490784
Test auc_pleural_effusion:  0.8473460078239441
Test auc_pleural_other:  0.7237358093261719
Test auc_fracture:  0.6555337309837341

Problems, questions & discussion points

  • server issues

Next steps

  • integrate conditional training into our framework (benchmark/experiments)
  • add label smoothing regularization
  • retrain with full dataset
  • normalize weights for wbce, cwbce
  • analyse leaderboard github code
  • add same transformations ( data augmentation)
  • maybe implement visualization pytorch
  • NO masked loss for WBCE
  • learning rate anpassen

Next meeting:

20.08.2020 14:00 Uhr