Meeting 06.08.20 - TobiasSchmidtDE/DeepL-MedicalImaging GitHub Wiki
What happened so far
- Infrastructure / Tensorboard
- Add class based metrics to tensorboard for all metrics
- fixed masked metrics
- Preprocessing
- Architecures
- Masked Loss function
- Model training
- base TF: -> equal to ours
- base pytorch: -> equal to ours
- pytorch chexpert leadership top4 implementation
- 5 classes: Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion
- 320x320 without data augmentation: 2 Epochs: Auc : 0.828 0.899 0.888 0.839 0.915,Mean auc: 0.874
- 256x256 3 Epochs: Auc : 0.770 0.926 0.900 0.826 0.929,Mean auc: 0.870
- 320x320 3 Epochs: Auc : 0.795 0.929 0.905 0.810 0.931,Mean auc: 0.874
- 12 classes: Enlarged Cardiomediastinum, Cardiomegaly, Lung Opacity, Lung Lesion, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion, Pleural Other, Fracture
- 320x320: Auc : 0.878 0.501 0.826 0.918 0.464 0.929 0.916 0.635 0.828 0.864 0.932 0.974,Mean auc: 0.806
- 5 classes: Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion
- chexpert dataset paper:
- 5 classes: auc: 0.811, 0.840, 0.932, 0.929, 0.931
- ensemble paper:
- 5 classes: auc: 0.745, 0.813, 0.882, 0.921, 0.930
- ours (trained on 63% of train data):
- 12 classes (DenseNet121_Chexpert_BCE_E3_B32_C1_N12)
- Mean auc: 0.723
- 12 classes (DenseNet121_Chexpert_BCE_E3_B32_C1_N12)
Test auc_enlarged_cardiomediastinum: 0.6274955868721008
Test auc_cardiomegaly: 0.827772855758667
Test auc_lung_opacity: 0.70615553855896
Test auc_lung_lesion: 0.6908576488494873
Test auc_edema: 0.7949528694152832
Test auc_consolidation: 0.7065780758857727
Test auc_pneumonia: 0.6720331907272339
Test auc_atelectasis: 0.6417831778526306
Test auc_pneumothorax: 0.7809439301490784
Test auc_pleural_effusion: 0.8473460078239441
Test auc_pleural_other: 0.7237358093261719
Test auc_fracture: 0.6555337309837341
- Other
- Visualizing Predictions
- Grad Cam: Gradient-weighted Class Activation Mapping
- Guided Grad Cam
- CNN Fixations
- Visualizing Predictions
Problems, questions & discussion points
- server issues
Next steps
- integrate conditional training into our framework (benchmark/experiments)
- add label smoothing regularization
- retrain with full dataset
- normalize weights for wbce, cwbce
- analyse leaderboard github code
- add same transformations ( data augmentation)
- maybe implement visualization pytorch
- NO masked loss for WBCE
- learning rate anpassen
Next meeting:
20.08.2020 14:00 Uhr