DenseNet121_Chexpert_WBCE_E20_B32 - TobiasSchmidtDE/DeepL-MedicalImaging GitHub Wiki

DenseNet121_Chexpert_WBCE_E20_B32

Version: 1

Trained DenseNet121 architecture using the 'Chexpert_WBCE_E20_B32' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 20 epochs using the Adam optimizer and binary_crossentropy loss with class weights. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 143410 number of sample, the validation set 35635, and the test set 44369.

from pathlib import Path
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained DenseNet121 architecture using the 'Chexpert_WBCE_E20_B32' benchmark.

 The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256).


The training was done for 20 epochs using the Adam optimizer and binary_crossentropy loss with class weights.


A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 143410 number of sample, the validation set 35635, and the test set 44369.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                            precision    recall  f1-score   support

                No Finding       0.11      0.10      0.10      4574
Enlarged Cardiomediastinum       0.06      0.04      0.05      2022
              Cardiomegaly       0.13      0.14      0.13      5522
              Lung Opacity       0.46      0.18      0.26     20674
               Lung Lesion       0.04      0.01      0.02      1709
                     Edema       0.24      0.18      0.21     10348
             Consolidation       0.06      0.01      0.01      2922
                 Pneumonia       0.03      0.00      0.00      1215
               Atelectasis       0.13      0.01      0.02      6714
              Pneumothorax       0.08      0.04      0.05      3652
          Pleural Effusion       0.39      0.37      0.38     17290
             Pleural Other       0.02      0.00      0.01       694
                  Fracture       0.04      0.01      0.01      1726
           Support Devices       0.51      0.52      0.52     23077

                 micro avg       0.36      0.25      0.29    102139
                 macro avg       0.16      0.12      0.13    102139
              weighted avg       0.33      0.25      0.27    102139
               samples avg       0.28      0.23      0.23    102139

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.3142490088939667
Test auc:  0.7549559473991394
Test precision:  0.6636328101158142
Test recall:  0.46258530020713806
Test f2_score:  0.49242109060287476
Test binary_accuracy:  0.8729780912399292

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'batch_size': 32,
    'benchmark_name': 'Chexpert_WBCE_E20_B32',
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': True,
    'epochs': 20,
    'label_columns': [   'No Finding',
                         'Enlarged Cardiomediastinum',
                         'Cardiomegaly',
                         'Lung Opacity',
                         'Lung Lesion',
                         'Edema',
                         'Consolidation',
                         'Pneumonia',
                         'Atelectasis',
                         'Pneumothorax',
                         'Pleural Effusion',
                         'Pleural Other',
                         'Fracture',
                         'Support Devices'],
    'loss': 'binary_crossentropy',
    'metrics': ['auc', 'precision', 'recall', 'f2_score', 'binary_accuracy'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'negative_weights': [   1.110120177268982,
                            1.051700472831726,
                            1.1367506980895996,
                            1.899986743927002,
                            1.0429342985153198,
                            1.30768883228302,
                            1.0704970359802246,
                            1.0280543565750122,
                            1.1742662191390991,
                            1.096386432647705,
                            1.6260361671447754,
                            1.015804648399353,
                            1.0428282022476196,
                            2.0840952396392822],
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'positive_weights': [   10.080989837646484,
                            20.34217643737793,
                            8.312580108642578,
                            2.1111273765563965,
                            24.291378021240234,
                            4.25003719329834,
                            15.185005187988281,
                            36.6450309753418,
                            6.738346099853516,
                            11.374900817871094,
                            2.5973517894744873,
                            64.27252197265625,
                            24.349124908447266,
                            1.9224282503128052],
    'shuffle': True,
    'test_num_samples': 44369,
    'train_num_samples': 143410,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'use_class_weights': True,
    'valid_num_samples': 35635}

DenseNet121_Chexpert_WBCE_E20_B32

Version: 1

Trained DenseNet121 architecture using the 'Chexpert_WBCE_E20_B32' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256). The training was done for 20 epochs using the Adam optimizer and binary_crossentropy loss with class weights. A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 143410 number of sample, the validation set 35635, and the test set 44369.

from pathlib import Path
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint

basepath = Path(os.getcwd())
if basepath.name != "idp-radio-1":
    os.chdir(basepath.parent.parent)
    print(os.getcwd())
load_dotenv(find_dotenv())

from src.preprocessing.split.train_test_split import train_test_split
/srv/idp-radio-1
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained DenseNet121 architecture using the 'Chexpert_WBCE_E20_B32' benchmark.

 The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffel set to True and images rescaled to dimension (256, 256).


The training was done for 20 epochs using the Adam optimizer and binary_crossentropy loss with class weights.


A total of 14 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 143410 number of sample, the validation set 35635, and the test set 44369.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                            precision    recall  f1-score   support

                No Finding       0.11      0.10      0.10      4574
Enlarged Cardiomediastinum       0.06      0.04      0.05      2022
              Cardiomegaly       0.13      0.14      0.13      5522
              Lung Opacity       0.46      0.18      0.26     20674
               Lung Lesion       0.04      0.01      0.02      1709
                     Edema       0.24      0.18      0.21     10348
             Consolidation       0.06      0.01      0.01      2922
                 Pneumonia       0.03      0.00      0.00      1215
               Atelectasis       0.13      0.01      0.02      6714
              Pneumothorax       0.08      0.04      0.05      3652
          Pleural Effusion       0.39      0.37      0.38     17290
             Pleural Other       0.02      0.00      0.01       694
                  Fracture       0.04      0.01      0.01      1726
           Support Devices       0.51      0.52      0.52     23077

                 micro avg       0.36      0.25      0.29    102139
                 macro avg       0.16      0.12      0.13    102139
              weighted avg       0.33      0.25      0.27    102139
               samples avg       0.28      0.23      0.23    102139

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.3142490088939667
Test auc:  0.7549559473991394
Test precision:  0.6636328101158142
Test recall:  0.46258530020713806
Test f2_score:  0.49242109060287476
Test binary_accuracy:  0.8729780912399292

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'batch_size': 32,
    'benchmark_name': 'Chexpert_WBCE_E20_B32',
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': True,
    'epochs': 20,
    'label_columns': [   'No Finding',
                         'Enlarged Cardiomediastinum',
                         'Cardiomegaly',
                         'Lung Opacity',
                         'Lung Lesion',
                         'Edema',
                         'Consolidation',
                         'Pneumonia',
                         'Atelectasis',
                         'Pneumothorax',
                         'Pleural Effusion',
                         'Pleural Other',
                         'Fracture',
                         'Support Devices'],
    'loss': 'binary_crossentropy',
    'metrics': ['auc', 'precision', 'recall', 'f2_score', 'binary_accuracy'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'negative_weights': [   1.110120177268982,
                            1.051700472831726,
                            1.1367506980895996,
                            1.899986743927002,
                            1.0429342985153198,
                            1.30768883228302,
                            1.0704970359802246,
                            1.0280543565750122,
                            1.1742662191390991,
                            1.096386432647705,
                            1.6260361671447754,
                            1.015804648399353,
                            1.0428282022476196,
                            2.0840952396392822],
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'positive_weights': [   10.080989837646484,
                            20.34217643737793,
                            8.312580108642578,
                            2.1111273765563965,
                            24.291378021240234,
                            4.25003719329834,
                            15.185005187988281,
                            36.6450309753418,
                            6.738346099853516,
                            11.374900817871094,
                            2.5973517894744873,
                            64.27252197265625,
                            24.349124908447266,
                            1.9224282503128052],
    'shuffle': True,
    'test_num_samples': 44369,
    'train_num_samples': 143410,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'use_class_weights': True,
    'valid_num_samples': 35635}

Data Distribution

if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    benchmark = data['benchmark']

    dataset_path = Path(benchmark['dataset_folder'])
    train_labels = benchmark['train_labels'] if 'train_labels' in benchmark.keys() else 'train.csv'
    split_test_size =  benchmark['split_test_size'] if 'split_test_size' in benchmark.keys() else 0.2
    split_valid_size =  benchmark['split_valid_size'] if 'split_valid_size' in benchmark.keys() else 0.2
    split_group = benchmark['split_group'] if 'split_group' in benchmark.keys() else 'patient_id'
    split_seed = benchmark['split_seed']

    all_labels = pd.read_csv(dataset_path / train_labels)
    train_labels, test_labels = train_test_split(all_labels, test_size=split_test_size, group=split_group, seed=split_seed)
    train_labels, validation_labels = train_test_split(train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
from src.datasets.u_encoding import uencode

def get_distribution(labels):
    if 'nan_replacement' in benchmark.keys():
        labels = labels.fillna(benchmark['nan_replacement'])
    data = labels.to_numpy()
    data = uencode(benchmark['u_enc'], data, unc_value=benchmark['unc_value'])
    data = pd.DataFrame(data, columns=labels.columns)

    labels = data[benchmark['label_columns']]

    d = {'Pathology': [], 'Positive': [], 'Positive %': [], 'Negative': [], 'Negative %': [],}
    for label in labels.columns:
        values = labels.groupby(label)
        d['Pathology'].append(label)

        positive = values.size()[1.0] if 1.0 in values.size() else 0
        positive_percent = positive / labels.shape[0] * 100
        d['Positive'].append(positive)
        d['Positive %'].append(round(positive_percent))

        negative = values.size()[-0.0] if -0.0 in values.size() else 0
        negative_percent = negative / labels.shape[0] * 100
        d['Negative'].append(negative)
        d['Negative %'].append(round(negative_percent))
    
    df = pd.DataFrame(d)
    df = df.set_index('Pathology')

    return df
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    train = get_distribution(train_labels)
    val = get_distribution(validation_labels)
    test = get_distribution(test_labels)
    
    positives = train[['Positive %']].merge(val[['Positive %']], left_index=True, right_index=True).merge(test[['Positive %']], left_index=True,  right_index=True).rename(columns={"Positive %_x": "Positives Train", "Positive %_y": "Positives Validation", "Positive %": "Positives Test", })
    positives.copy().plot(kind='bar', figsize=(10,7), title="Positive Labels Distribution")
    
    negatives = train[['Negative %']].merge(val[['Negative %']], left_index=True, right_index=True).merge(test[['Negative %']], left_index=True,  right_index=True).rename(columns={"Negative %_x": "Negative Train", "Negative %_y": "Negative Validation", "Negative %": "Negative Test", })
    negatives.copy().plot(kind='bar', figsize=(10,7), title="Negative Labels Distribution")

    train[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Training set")
    val[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Validation set")
    test[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Test set")
⚠️ **GitHub.com Fallback** ⚠️