DenseNet121_Chexpert_BCE_E5_B32_C0_N5D256_DS100_LR4 - TobiasSchmidtDE/DeepL-MedicalImaging GitHub Wiki

DenseNet121_Chexpert_BCE_E5_B32_C0_N5D256_DS100_LR4

Version: 1

Trained DenseNet121 architecture using the 'Chexpert_BCE_E5_B32_C0_N5D256_DS9010_LR4' benchmark. The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffle set to True and images rescaled to dimension (256, 256). The training was done for 5 epochs using the Adam optimizer and binary_crossentropy loss. A total of 5 labels/pathologies were included in the training and encoded using the 'uzeroes' method. The traing set included 200278 number of sample, the validation set 234, and the test set 234.

from pathlib import Path
from dotenv import load_dotenv, find_dotenv
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import json
import os
import re
import pprint

basepath = Path(os.getcwd())
if basepath.name != "idp-radio-1":
    os.chdir(basepath.parent.parent)
    print(os.getcwd())
load_dotenv(find_dotenv())

from src.preprocessing.split.train_test_split import train_test_split
/srv/idp-radio-1
data = json.loads(os.environ['EXP_DATA'])
history = data['history']

Model and Benchmark Summary

for s in data["description"].split(".")[:-1]:
    print(s + ".\n")
Trained DenseNet121 architecture using the 'Chexpert_BCE_E5_B32_C0_N5D256_DS9010_LR4' benchmark.

 The benchmark was initialized for the chexpert_full dataset with batch size of 32, shuffle set to True and images rescaled to dimension (256, 256).


The training was done for 5 epochs using the Adam optimizer and binary_crossentropy loss.


A total of 5 labels/pathologies were included in the training and encoded using the 'uzeroes' method.


The traing set included 200278 number of sample, the validation set 234, and the test set 234.

Extract and format metrics to be plotted

# if there are any metrics that were renamed, add this new name here as ("default_name":"new_name")
metric_custom_names={"auc":"AUC_ROC"}

metric_names = [re.sub("([a-z0-9])([A-Z])","\g<1> \g<2>",name) for name in data["benchmark"]["metrics"]]
metric_keys = [re.sub("([a-z0-9])([A-Z])","\g<1>_\g<2>",name).lower() for name in data["benchmark"]["metrics"]]

for default_name, custom_name in metric_custom_names.items():
    if not default_name in history.keys() and default_name in metric_keys:
        #replace default name with custom name
        metric_keys[metric_keys.index(default_name)]=custom_name

Plot training & validation accuracy values

def print_or_plot_metric(metric_key, metric_name, figure_name):
    if len(history[metric_key]) == 1:
        print("Data for {m_name} only available for a single epoch. \nSkipping plot and printing data...".format(m_name=metric_name))
        print('Train {}: '.format(metric_name), history[metric_key])
        print('Validation {}: '.format(metric_name), history['val_'+metric_key])
        print()        
    else:
        plot_epoch_metric(metric_key, metric_name, figure_name)
        
def plot_epoch_metric(metric_key, metric_name, figure_name):
    figure(num=None, figsize=(10, 6))
    plt.plot(history[metric_key])
    if 'val_'+metric_key in history.keys():
        plt.plot(history['val_'+metric_key])
    plt.title(figure_name)
    plt.ylabel(metric_name)
    plt.xlabel('Epoch')
    if 'val_'+metric_key in history.keys():
        plt.legend(['Train', 'Validation'], loc='upper left')
    plt.show()

for i, metric_key in enumerate(metric_keys):
    print_or_plot_metric(metric_key, metric_names[i], "Model "+metric_names[i])

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

png

Plot training & validation loss values

print_or_plot_metric("loss", "Loss", "Model loss")

png

if "lr" in history.keys():
    plot_epoch_metric("lr", "Learning Rate", "Learning Rate")

png

Classification Report

if 'classification_report' in data.keys() and data['classification_report']:
    print(data['classification_report'])
                  precision    recall  f1-score   support

    Cardiomegaly       0.12      0.01      0.03        68
           Edema       0.12      0.09      0.10        45
   Consolidation       1.00      0.03      0.06        33
     Atelectasis       0.40      0.03      0.05        80
Pleural Effusion       0.30      0.27      0.28        67

       micro avg       0.24      0.09      0.13       293
       macro avg       0.39      0.09      0.10       293
    weighted avg       0.34      0.09      0.11       293
     samples avg       0.09      0.05      0.06       293

Test Scores

if 'test' in data.keys() and data['test']:
    for score_name, score in data["test"].items():
        print('Test {}: '.format(score_name), score)
Test loss:  0.5121414661407471
Test auc:  0.8334497213363647
Test precision:  0.7663551568984985
Test recall:  0.27986347675323486
Test f2_score:  0.3205629587173462
Test binary_accuracy:  0.7982910871505737
Test accuracy_cardiomegaly:  0.7435897588729858
Test accuracy_edema:  0.8547008633613586
Test accuracy_consolidation:  0.8547008633613586
Test accuracy_atelectasis:  0.6794871687889099
Test accuracy_pleural_effusion:  0.8589743375778198
Test auc_cardiomegaly:  0.7085843086242676
Test auc_edema:  0.9042916297912598
Test auc_consolidation:  0.8726820945739746
Test auc_atelectasis:  0.7697239518165588
Test auc_pleural_effusion:  0.9119672179222107
Test precision_cardiomegaly:  1.0
Test precision_edema:  0.6666666865348816
Test precision_consolidation:  0.0
Test precision_atelectasis:  1.0
Test precision_pleural_effusion:  0.7833333611488342
Test recall_cardiomegaly:  0.11764705926179886
Test recall_edema:  0.4888888895511627
Test recall_consolidation:  0.0
Test recall_atelectasis:  0.0625
Test recall_pleural_effusion:  0.7014925479888916
Test f2_score_cardiomegaly:  0.1428571492433548
Test f2_score_edema:  0.5164319276809692
Test f2_score_consolidation:  0.0
Test f2_score_atelectasis:  0.07692307978868484
Test f2_score_pleural_effusion:  0.7164633870124817

Benchmark Details

pp = pprint.PrettyPrinter(indent=4)
if "benchmark" in data.keys():
    pp.pprint(data["benchmark"])
{   'augmentation': None,
    'batch_size': 32,
    'benchmark_name': 'Chexpert_BCE_E5_B32_C0_N5D256_DS9010_LR4',
    'crop': False,
    'dataset_folder': 'data/chexpert/full',
    'dataset_name': 'chexpert_full',
    'dim': [256, 256],
    'drop_last': False,
    'epochs': 5,
    'label_columns': [   'Cardiomegaly',
                         'Edema',
                         'Consolidation',
                         'Atelectasis',
                         'Pleural Effusion'],
    'learning_rate': 2.5e-05,
    'loss': 'binary_crossentropy',
    'metrics': [   'auc',
                   'precision',
                   'recall',
                   'f2_score',
                   'binary_accuracy',
                   'accuracy_cardiomegaly',
                   'accuracy_edema',
                   'accuracy_consolidation',
                   'accuracy_atelectasis',
                   'accuracy_pleural_effusion',
                   'auc_cardiomegaly',
                   'auc_edema',
                   'auc_consolidation',
                   'auc_atelectasis',
                   'auc_pleural_effusion',
                   'precision_cardiomegaly',
                   'precision_edema',
                   'precision_consolidation',
                   'precision_atelectasis',
                   'precision_pleural_effusion',
                   'recall_cardiomegaly',
                   'recall_edema',
                   'recall_consolidation',
                   'recall_atelectasis',
                   'recall_pleural_effusion',
                   'f2_score_cardiomegaly',
                   'f2_score_edema',
                   'f2_score_consolidation',
                   'f2_score_atelectasis',
                   'f2_score_pleural_effusion'],
    'models_dir': 'models',
    'n_channels': 3,
    'nan_replacement': 0,
    'negative_weights': [   1.1362839937210083,
                            1.3045387268066406,
                            1.0708907842636108,
                            1.1751128435134888,
                            1.626412034034729],
    'optimizer': 'Adam',
    'path_column': 'Path',
    'path_column_prefix': '',
    'positive_weights': [   8.337621688842773,
                            4.283654689788818,
                            15.106200218200684,
                            6.710604667663574,
                            2.596393346786499],
    'shuffle': True,
    'split_seed': 6122156,
    'test_num_samples': 234,
    'train_num_samples': 200278,
    'u_enc': 'uzeroes',
    'unc_value': -1,
    'use_class_weights': False,
    'valid_num_samples': 234}

Data Distribution

if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    benchmark = data['benchmark']

    dataset_path = Path(benchmark['dataset_folder'])
    train_labels = benchmark['train_labels'] if 'train_labels' in benchmark.keys() else 'train.csv'
    test_labels = benchmark['test_labels'] if 'test_labels' in benchmark.keys() else None
    split_test_size =  benchmark['split_test_size'] if 'split_test_size' in benchmark.keys() else 0.1
    split_valid_size =  benchmark['split_valid_size'] if 'split_valid_size' in benchmark.keys() else 0.1
    split_group = benchmark['split_group'] if 'split_group' in benchmark.keys() else 'patient_id'
    split_seed = benchmark['split_seed']

    if test_labels is None:
        # read all labels from one file and split into train/test/valid
        all_labels = pd.read_csv(dataset_path / train_labels)
        train_labels, test_labels = train_test_split(
            all_labels, test_size=split_test_size, group=split_group, seed=split_seed)
        train_labels, validation_labels = train_test_split(
            train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
    else:
        # read train and valid labels from one file and test from another.
        train_labels = pd.read_csv(dataset_path / train_labels)
        train_labels, validation_labels = train_test_split(
            train_labels, test_size=split_valid_size, group=split_group, seed=split_seed)
        test_labels = pd.read_csv(dataset_path / test_labels)
from src.datasets.u_encoding import uencode

def get_distribution(labels):
    if 'nan_replacement' in benchmark.keys():
        labels = labels.fillna(benchmark['nan_replacement'])
    data = labels.to_numpy()
    data = uencode(benchmark['u_enc'], data, unc_value=benchmark['unc_value'])
    data = pd.DataFrame(data, columns=labels.columns)

    labels = data[benchmark['label_columns']]

    d = {'Pathology': [], 'Positive': [], 'Positive %': [], 'Negative': [], 'Negative %': [],}
    for label in labels.columns:
        values = labels.groupby(label)
        d['Pathology'].append(label)

        positive = values.size()[1.0] if 1.0 in values.size() else 0
        positive_percent = positive / labels.shape[0] * 100
        d['Positive'].append(positive)
        d['Positive %'].append(round(positive_percent))

        negative = values.size()[-0.0] if -0.0 in values.size() else 0
        negative_percent = negative / labels.shape[0] * 100
        d['Negative'].append(negative)
        d['Negative %'].append(round(negative_percent))
    
    df = pd.DataFrame(d)
    df = df.set_index('Pathology')

    return df
if 'benchmark' in data.keys() and 'split_seed' in data['benchmark']:
    train = get_distribution(train_labels)
    val = get_distribution(validation_labels)
    test = get_distribution(test_labels)
    
    positives = train[['Positive %']].merge(val[['Positive %']], left_index=True, right_index=True).merge(test[['Positive %']], left_index=True,  right_index=True).rename(columns={"Positive %_x": "Positives Train", "Positive %_y": "Positives Validation", "Positive %": "Positives Test", })
    positives.copy().plot(kind='bar', figsize=(10,7), title="Positive Labels Distribution")
    
    negatives = train[['Negative %']].merge(val[['Negative %']], left_index=True, right_index=True).merge(test[['Negative %']], left_index=True,  right_index=True).rename(columns={"Negative %_x": "Negative Train", "Negative %_y": "Negative Validation", "Negative %": "Negative Test", })
    negatives.copy().plot(kind='bar', figsize=(10,7), title="Negative Labels Distribution")

    train[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Training set")
    val[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Validation set")
    test[['Positive %', 'Negative %']].copy().plot(kind='bar', figsize=(10,7), title="Test set")

png

png

png

png

png

⚠️ **GitHub.com Fallback** ⚠️