CH6 - SunXiaoXiang/learn_wowagent GitHub Wiki
使用 wow-RAG 方法一的方式
import os
from dotenv import load_dotenv
from llama_index.core.agent import ReActAgent
from llama_index.core.tools import FunctionTool
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, Settings
from llama_index.core.tools import QueryEngineTool
from llama_index.core import SQLDatabase
from llama_index.core.query_engine import NLSQLTableQueryEngine
from sqlalchemy import create_engine
import sqlite3
from llama_index.llms.zhipuai import ZhipuAI
from llama_index.embeddings.zhipuai import ZhipuAIEmbedding
# 加载环境变量
load_dotenv()
# 从环境变量中读取 api_key
api_key = os.getenv('ZHIPU_API_KEY')
# 配置 API 参数
base_url = "https://open.bigmodel.cn/api/paas/v4/"
chat_model = "glm-4-flash"
emb_model = "embedding-2"
# 配置对话模型
llm = ZhipuAI(
api_key=api_key,
model=chat_model,
)
# 测试对话模型
print("测试对话模型:")
response = llm.complete("你是谁?")
print(response)
# 配置嵌入模型
embedding = ZhipuAIEmbedding(
api_key=api_key,
model=emb_model,
)
# 测试嵌入模型
print("\n测试嵌入模型:")
emb = embedding.get_text_embedding("你好呀呀")
print("嵌入向量长度:", len(emb))
print("嵌入向量类型:", type(emb))
构建索引
# 从指定文件读取,输入为List
from llama_index.core import SimpleDirectoryReader,Document
documents = SimpleDirectoryReader(input_files=['../docs/问答手册.txt']).load_data()
# 构建节点
from llama_index.core.node_parser import SentenceSplitter
transformations = [SentenceSplitter(chunk_size = 512)]
from llama_index.core.ingestion.pipeline import run_transformations
nodes = run_transformations(documents, transformations=transformations)
# 构建索引
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
from llama_index.core import StorageContext, VectorStoreIndex
emb = embedding.get_text_embedding("你好呀呀")
vector_store = FaissVectorStore(faiss_index=faiss.IndexFlatL2(len(emb)))
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(
nodes = nodes,
storage_context=storage_context,
embed_model = embedding,
)
构建问答模型
# 构建检索器
from llama_index.core.retrievers import VectorIndexRetriever
# 想要自定义参数,可以构造参数字典
kwargs = {'similarity_top_k': 5, 'index': index, 'dimensions': len(emb)} # 必要参数
retriever = VectorIndexRetriever(**kwargs)
# 构建合成器
from llama_index.core.response_synthesizers import get_response_synthesizer
response_synthesizer = get_response_synthesizer(llm=llm, streaming=True)
# 构建问答引擎
from llama_index.core.query_engine import RetrieverQueryEngine
engine = RetrieverQueryEngine(
retriever=retriever,
response_synthesizer=response_synthesizer,
)
用 RAG 回答一下
# 提问
question = "What are the applications of Agent AI systems ?"
response = engine.query(question)
for text in response.response_gen:
print(text, end="")
我们可以把这个RAG当作一个工具给Agent调用,让它去思考。 先来配置问答工具
# 配置查询工具
from llama_index.core.tools import QueryEngineTool
from llama_index.core.tools import ToolMetadata
query_engine_tools = [
QueryEngineTool(
query_engine=engine,
metadata=ToolMetadata(
name="RAG工具",
description=(
"用于在原文中检索相关信息"
),
),
),
]
创建ReAct Agent
# 创建ReAct Agent
from llama_index.core.agent import ReActAgent
agent = ReActAgent.from_tools(query_engine_tools, llm=llm, verbose=True)
调用Agent
# 让Agent完成任务
# response = agent.chat("请问商标注册需要提供哪些文件?")
response = agent.chat("What are the applications of Agent AI systems ?")
print(response)
输出 还需要
pip install faiss-cpu