Home - SubhaNAG2001/sentiment-analysis GitHub Wiki
Sentiment Analysis Web Application
Welcome to the wiki for the Sentiment Analysis Web Application! This wiki provides detailed documentation about the project, its features, setup instructions, and usage examples.
Overview
This web application analyzes the sentiment of text using machine learning techniques. It provides both a user-friendly web interface and a RESTful API for integration with other systems.
Quick Links
- Installation Guide
- Usage Guide
- API Documentation
- Model Information
- Contributing Guidelines
- Troubleshooting
Features
- Text sentiment analysis (Positive, Negative, Neutral)
- Confidence score for predictions
- History of recent analyses
- RESTful API for integration
- Responsive web interface
Technology Stack
- Backend: Python, Flask
- Frontend: HTML, CSS, JavaScript, Bootstrap
- Machine Learning: scikit-learn, NLTK
- Production Server: Waitress
Project Structure
sentiment-analysis/
├── app.py # Main Flask application
├── run.py # Production server script
├── config.py # Configuration settings
├── sentiment_model.pkl # Trained ML model
├── tfidf_vectorizer.pkl # TF-IDF vectorizer
├── model.ipynb # Jupyter notebook for model training
├── templates/
│ └── index.html # Web interface template
└── README.md # Project overview
License
This project is licensed under the MIT License - see the LICENSE file for details.