Adversarial Attacks on Medical Images via Distortion of Feature Distribution - Songwooseok123/Study_Space GitHub Wiki

์š”์•ฝ

  • U-Net ๊ธฐ๋ฐ˜์˜ CT segmentation ๋ชจ๋ธ์˜ ๋†€๋ผ์šด ์„ฑ๋Šฅ
  • ๊ทธ๋Ÿฌ๋‚˜ ์ด ๋ชจ๋ธ๋“ค์€ ์ ๋Œ€์  ๊ณต๊ฒฉ์— ์ทจ์•ฝํ•˜๋‹ค๋Š” ๋ฌธ์ œ
  • ์ผ๋ฐ˜์ ์ธ ์ ๋Œ€์  ๊ณต๊ฒฉ: ์ด๋ฏธ์ง€์— ๋…ธ์ด์ฆˆ๋‚˜ ๋ณ€ํ˜•์„ ์ถ”๊ฐ€(์ด๋ฏธ์ง€์˜ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ์กฐ์ž‘ํ•˜์—ฌ ๋Œ€์ƒ ๋ชจ๋ธ์˜ ์†์‹ค์„ ์ฆํญ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•) โ†’ ๊ณต๊ฒฉ์˜ ์„ฑ๊ณต๋ฅ ๊ณผ ์ธ์ง€ ๊ฐ€๋Šฅ์„ฑ(perceptibility) ๊ฐ„์˜ Trade-off ๋ฐœ์ƒ : ๊ทธ๋ฆผ 1 - ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋ฅผ ๋ชป ์†์ž„
  • ์ด ์—ฐ๊ตฌ์—์„œ๋Š” ๋Œ€์ƒ ๋ชจ๋ธ๊ณผ ์˜๋ฃŒ ์ „๋ฌธ๊ฐ€๋ฅผ ๋ชจ๋‘ ์†์ด๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ์œ ํ˜•์˜ ์ ๋Œ€์  ๊ณต๊ฒฉ์„ ์†Œ๊ฐœ
    • ๋Œ€์ƒ ๋ชจ๋ธ์„ ์†์ด๊ธฐ ์œ„ํ•ด ๋…ธ์ด์ฆˆ๋ฅผ ๋”ํ•˜๋Š” ๊ฒƒ ๋Œ€์‹  ์žฅ๊ธฐ์˜ ์งˆ๊ฐ ๋ถ„ํฌ๋ฅผ ๋ณ€๊ฒฝํ•˜๋ฉด์„œ ๋ชจ์–‘์€ ์œ ์ง€
    • adaptive instance normalization (AdaIN)๋ฅผ ์‚ฌ์šฉํ•˜๋Š” texture reformer๋ผ๊ณ  ์•Œ๋ ค์ง„ real-time style transfer method ๋ฅผ ์‚ฌ์šฉ โ†’ ์™œ๊ณก์„ ์œ ๋ฐœํ•˜๊ธฐ ์œ„ํ•ด ์ผ๋ฐ˜์ ์œผ๋กœ ์›๋ณธ๊ณผ ๋Œ€์ƒ ์ด๋ฏธ์ง€ ๋ถ„ํฌ๋ฅผ ์ •๋ ฌํ•˜๋Š” AdaIN์„ ์ˆ˜์ •

Contribution

  • ์ด ๋ฐฉ๋ฒ•๋ก ์€ ์ž๋™ CT ๋ถ„ํ•  ์‹œ์Šคํ…œ์˜ ํ‰๊ฐ€์™€ ๊ฒ€์ฆ์— ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ๋ฅผ ์ œ๊ณต
  • ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์œ„ํ•œ ๊ฐ•๋ ฅํ•œ ๋ฉ”์ปค๋‹ˆ์ฆ˜์œผ๋กœ ์ž‘์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ์ผ๋ฐ˜ํ™”๋ฅผ ํ–ฅ์ƒ

Method

  • ๋ชจ๋ธ: input ์ด๋ฏธ์ง€ x๋ฅผ ๋ฐ›๊ณ  ์„ธ๊ทธ๋งจํ…Œ์ด์…˜ y๋ฅผ ์˜ˆ์ธก
  • goal : ์ตœ๋Œ€ํ•œ ๋‹ค๋ฅธ ์„ธ๊ทธ๋งจํ…Œ์ด์…˜ adv y๋ฅผ ๋งŒ๋“œ๋Š” image adv x๋ฅผ ๋งŒ๋“œ๋Š” ๊ฒƒ .
  • feature distribution
    • AdaIN ์‹ 2.2.1 ์€ x adv์˜ feature distribution๊ณผ x์˜ feature distribution์˜ ํ‰๊ท ๊ณผ ํ‘œ์ค€ ํŽธ์ฐจ๋ฅผ ์ผ์น˜ํ•˜๋„๋ก ๋งŒ๋“œ๋Š” ์‹
      • ์ฆ‰ x adv์˜ feature distribution ์„ x์˜ feature distribution์˜ ์Šคํƒ€์ผ์„ ๊ฐ€์ง€๊ฒŒ ํ•˜๋Š” ์‹
    • dAdaIN : distorting factor ๊ณฑํ•˜๋„ค
      • figure 2 : ์›๋ณธ๊ณผ ์™ธ๊ณก ์ด๋ฏธ์ง€ ๋ฐ›๊ณ , ์›๋ณธ์— ์•ŒํŒŒ๋กœ distorting ์ฃผ๊ณ  , distorted ๋œ ๊ฑฐ๋ž‘ ์ธํ’‹์œผ๋กœ ๋“ค์–ด์™”๋˜ ์™ธ๊ณก ์ด๋ฏธ์ง€๋กœ ๋‹ค์‹œ AdalN

์†Œ์Šคํƒ€๊ฒŸ :

ํ…์Šคํ„ฐ ๋ง†๋จธ: ํ…์Šค์ณ๋Š” ๋ฐ”๊พธ๊ณ  shapeใ…กใ„ด๋ฐ”๊พธ๋Š”๊ฑฐ ๋‹ค๋ฅธ ์ด๋ฏธ์ง€ ๋‘๊ฐœ์—์„œ ํ•˜๋‚˜์—์„  ํ…์Šค์ฒ˜ ํ•˜๋‚˜๋Š” shape ๋ฝ‘๋Š”๊ฑฐ์ž„. ํ•˜๋‚˜๋Š” ์†Œ์Šค ํ•˜๋‚˜๋Š” ํƒ€๊ฒŸ์ž„

Feedback

  • trade-off between successful deception and perceptibility of alterations ->figure 1์€ ๊ธฐ์กด์˜ perturbation์„ ์ฃผ๋Š” ๋ฐฉ๋ฒ•์€ ์˜์‚ฌ๋ฅผ ์†์ด์ง€ ๋ชปํ•œ๋‹ค๋Š” ๊ทธ๋ฆผ์ด ๋งž๋‚˜ segmentation system๊ณผ interact๋ฅผ ๋ชปํ•œ๋‹ค๋Š”๊ฑด ์™œ๊ทธ๋Ÿฐ๊ฑฐ์ง€
  • abstract 8๋ฒˆ์จฐ ์ค„์— texture distribution๋ฅผ ๋ณ€๊ฒฝํ•œ๋‹ค๋Š”๊ฑฐ๋ž‘ introduction์— contribution(1)์— feature distribution์ด๋ž‘ ๊ฐ™์€ ๋ง์ด๊ฒ ์ง€.
  • method ์‹ discrepancy๊ฐ€ maximized ๋œ๋‹ค๊ณ  ํ•ด์„œ ์‹์œผ๋กœ ์™€๋ดค๋Š”๋ฐ ์ตœ๋Œ€ํ™” ๋Œ€์ƒ์ด s.t. such that์— ์žˆ๋”ฐ
  • ์‹2 f์— ๋Œ€ํ•œ ์„ค๋ช… - feature map ๋งž์ ธ?
  • level ๊ฐฏ์ˆ˜ 5๋ฒˆ์€ ์‚ฌ์šฉ์ž๊ฐ€ ์ •ํ•˜๋Š” ๊ฑด๊ฐ€