numpy practice - Serbipunk/notes GitHub Wiki
mmap
after reading the doc, it seems that this mode would avoid loading the whole file and operate
numpy.load(file, mmap_mode...)
mmap_mode: {โr+โ, โrโ, โw+โ, โcโ}, optional
https://numpy.org/doc/stable/reference/generated/numpy.memmap.html#numpy.memmap
https://numpy.org/doc/stable/reference/generated/numpy.load.html
meshgrid
Return coordinate matrices from coordinate vectors. ไปๅๆ ๅ้๏ผ่ฟๅๅๆ ็ฉ้ต
Make N-D coordinate arrays for vectorized evaluations of ๅๅปบ N-D ็ปดๅบฆ็ๆฐ็ป๏ผ
N-D scalar/vector fields over N-D grids, given ็จไบ็ข้ๅ่ฏไผฐ N-D ่พๅ ฅ็ๆ ้|ๅ้๏ผ
one-dimensional coordinate arrays x1, x2,..., xn. ่พๅ ฅไธบๅ | ่กๅ้ใ
ไพๅญ

np.c_
Translates slice objects to concatenation along the second axis. ่ฝฌๆขๅ็็็ฎๆ ๏ผๅป่ฟๆฅๆ็ฌฌไบไธช่ฝด๏ผ
This is short-hand for ``np.r_['-1,2,0', index expression]``,
which is useful because of its common occurrence
In particular, arrays will be stacked along their last axis after being upgraded to at least 2-D with
1's post-pended to the shape (column vectors made out of 1-D arrays).
See Also
--------
column_stack : Stack 1-D arrays as columns into a 2-D array.
r_ : For more detailed documentation.
Examples
--------
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])] # ็่ฟไธช่ฝ็ๆ
array([[1, 4],
[2, 5],
[3, 6]])
>>> np.c_[np.array([1,2,3](/Serbipunk/notes/wiki/1,2,3)), 0, 0, np.array([4,5,6](/Serbipunk/notes/wiki/4,5,6))]
array([1, 2, 3, ..., 4, 5, 6](/Serbipunk/notes/wiki/1,-2,-3,-...,-4,-5,-6))
np.flipud
