02. Security Risk Prevention Options - Rush910/Security-doc GitHub Wiki

As a SaaS provider, need to check with development team has implemented secure engineering practices in the design and code considering with below points

1. SQL, operating system or LDAP injection

Injection flaws, such as SQL, OS, and LDAP injection occur when untrusted data is sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter into executing unintended commands or accessing data without proper authorization.

2. Insecure authentication and session management

Application functions related to authentication and session management are often not implemented correctly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit other implementation flaws to assume other users’ identities.

3. Cross-site scripting because of lack of data validation

XSS flaws occur whenever an application takes untrusted data and sends it to a web browser without proper validation or escaping. XSS allows attackers to execute scripts in the victim’s browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.

4. Insecure exposure to references like files and directories

A direct object reference occurs when a developer exposes a reference to an internal implementation object, such as a file, directory, or database key. Without an access control check or other protection, attackers can manipulate these references to access unauthorized data.

5. Incorrectly configured (from a security perspective) databases, middleware and operating systems

Good security requires having a secure configuration defined and deployed for the application, frameworks, application server, web server, database server, and platform. Secure settings should be defined, implemented, and maintained, as defaults are often insecure. Additionally, software should be kept up to date.

6. Exposing sensitive data like user IDs, passwords and personal identification information

Many web applications do not properly protect sensitive data, such as credit cards, tax IDs, and authentication credentials. Attackers may steal or modify such weakly protected data to conduct credit card fraud, identity theft, or other crimes. Sensitive data deserves extra protection such as encryption at rest or in transit, as well as special precautions when exchanged with the browser.

7. Checking for access inside the business logic on the server side

Most web applications verify function level access rights before making that functionality visible in the UI. However, applications need to perform the same access control checks on the server when each function is accessed. If requests are not verified, attackers will be able to forge requests in order to access functionality without proper authorization.

8. Cross-site request forgery

A CSRF attack forces a logged-on victim’s browser to send a forged HTTP request, including the victim’s session cookie and any other automatically included authentication information, to a vulnerable web application. This allows the attacker to force the victim’s browser to generate requests the vulnerable application thinks are legitimate requests from the victim.

9. Using components with known vulnerabilities

Components, such as libraries, frameworks, and other software modules, almost always run with full privileges. If a vulnerable component is exploited, such an attack can facilitate serious data loss or server takeover. Applications using components with known vulnerabilities may undermine application defenses and enable a range of possible attacks and impacts.

10. Unvalidated redirects and forwards

Web applications frequently redirect and forward users to other pages and websites, and use untrusted data to determine the destination pages. Without proper validation, attackers can redirect victims to phishing or malware sites, or use forwards to access unauthorized pages.

11. Beware of error messages

Be careful with how much information you give away in your error messages. Provide only minimal errors to your users, to ensure they don't leak secrets present on your server (e.g. API keys or database passwords). Don't provide full exception details either, as these can make complex attacks like SQL injection far easier. Keep detailed errors in your server logs, and show users only the information they need

12. Validate on both sides

Validation should always be done both on the browser and server side. The browser can catch simple failures like mandatory fields that are empty and when you enter text into a numbers only field. These can however be bypassed, and you should make sure you check for these validation and deeper validation server side as failing to do so could lead to malicious code or scripting code being inserted into the database or could cause undesirable results in your website.

13. file uploads

Allowing users to upload files to your website can be a big website security risk, even if it’s simply to change their avatar. The risk is that any file uploaded, however innocent it may look, could contain a script that when executed on your server, completely opens up your website.

If you have a file upload form then you need to treat all files with great suspicion. If you are allowing users to upload images, you cannot rely on the file extension or the mime type to verify that the file is an image as these can easily be faked. Even opening the file and reading the header, or using functions to check the image size are not foolproof. Most images formats allow storing a comment section that could contain PHP code that could be executed by the server.

So what can you do to prevent this? Ultimately you want to stop users from being able to execute any file they upload. By default web servers won't attempt to execute files with image extensions, but don't rely solely on checking the file extension as a file with the name image.jpg.php has been known to get through.

Some options are to rename the file on upload to ensure the correct file extension, or to change the file permissions, for example, chmod 0666 so it can't be executed. If using *nix, you could create a .htaccess file (see below) that will only allow access to set files preventing the double extension attack mentioned earlier.

deny from all

`<Files ~ "^\w+\.(gif|jpe?g|png)$">`

`order deny,allow`

`allow from all`

`</Files>`

Ultimately, the recommended solution is to prevent direct access to uploaded files altogether. This way, any files uploaded to your website are stored in a folder outside of the webroot or in the database as a blob. If your files are not directly accessible you will need to create a script to fetch the files from the private folder (or an HTTP handler in .NET) and deliver them to the browser. Image tags support an src attribute that is not a direct URL to an image, so your src attribute can point to your file delivery script providing you set the correct content type in the HTTP header. For example:

<img src="/imageDelivery.php?id=1234" />

<?php

// imageDelivery.php

// Fetch image filename from database based on $_GET["id"]

// Deliver image to browser

Header('Content-Type: image/gif');

readfile('images/'.$fileName);

?>

Most hosting providers deal with the server configuration for you, but if you are hosting your website on your own server then there are few things you will want to check.

Ensure you have a firewall setup, and are blocking all non essential ports. If possible setting up a DMZ (Demilitarised Zone) only allowing access to port 80 and 443 from the outside world. Although this might not be possible if you don't have access to your server from an internal network as you would need to open up ports to allow uploading files and to remotely log in to your server over SSH or RDP.

If you are allowing files to be uploaded from the Internet only use secure transport methods to your server such as SFTP or SSH.

If possible have your database running on a different server to that of your web server. Doing this means the database server cannot be accessed directly from the outside world, only your web server can access it, minimising the risk of your data being exposed.

Finally, don't forget about restricting physical access to your server.

Go to Next Page >>>>>>

⚠️ **GitHub.com Fallback** ⚠️