Python_Third_Party - RicoJia/notes GitHub Wiki

========================================================================

Pudb

========================================================================

  1. pudb for multiple processes
    • esc esc up to close window
    • set break point another file
    • c-p: preferences
    • to quit:
  2. last command in command window: ctrl-n, p

========================================================================

Numpy

========================================================================

numpy array

  1. c-contiguous array: array's rows are contiguous. f-contiguous (fortran) is columns are contiguous.

  2. stride: number of bytes per dimension in 3D array, (bytes_per_page, bytes_per_row, bytes_per_item).

  3. vectorized functions is to apply the function on each element of the array.

  4. numpy axes: by default, 1d is a column vector

    • note: rgb like [X,Y,3] cannot do frame multiplication directly, because you can only multiply [3,] array with it.

  5. performance issues:

    • np.clip() is slow because it returns a copy of an array. Alternative: np.core.umath.clip faster
    • np.zeros(shape=a.shape, dtype = np.int32) is 100 times faster than a=np.zeros_like(a).astype(np.uint32)
  6. indexing

    • np.any(axis): returns True any element along the axis has element true.
  7. np_random

    1. random.randint(low, high=None, size=None, dtype=int)¶
      • works with negative values as well

Misc Tool Functions

  1. np.argsort sorts along an axis (ascending order), and return the indices

    arr = np.array([4,2,3,1])
    np.argsort(arr) # see array([3, 1, 2, 0])
    • if you want descending order, use np.flip()
    • np.flipud():axis 0; np.fliplr() axis 1
  2. np.argmin(arr): returns the index of the smallest element

  3. Round numbers:

    • np.round(np_array, decimal_places)
    • round(num, digits_after_decimal_point)
      round(4.567, 2) #4.57

========================================================================

Zip file

========================================================================

  1. AttributeError: module 'zipfile' has no attribute 'open': type in module name: zip_file instead of zipfile

========================================================================

Sympy

========================================================================

  1. sym.collect(J_dot, T), collect all terms together

========================================================================

Autopep8

========================================================================

  1. reformatting using: autopep8
    pip3 install --upgrade autopep8
    autopep8 --in-place --aggressive --aggressive

========================================================================

PIL

========================================================================

  1. from RGB values to JPEG
    pil_img = Image.fromarray(np_image, 'RGB')
    pil_img.thumbnail((800, 800))
    pil_img.save(buf, format="JPEG", quality=35)

========================================================================

Matplotlib

========================================================================

  1. plt - show in real time
    import matplotlib.pyplot as plt
    plt.clf()
    plt.title("Reid Descriptor")
    plt.plot(flat_descriptor)
    # plt.plot(np.arange(1), descriptor[:, :, 1])
    # plt.plot(np.arange(2), descriptor[:, :, 2])
    plt.pause(0.1)

========================================================================

boto3

========================================================================

  1. boto3 is for uploading to AWS

========================================================================

Sklearn

========================================================================

  1. distance_cost_matrix = pairwise_distances(track_pos, det_pos)
    array([[1., 1.],
       [2., 2.],
       [2., 2.]])
    
    array2([[1., 1.],
           [1., 1.],
           [1., 1.],
           [1., 1.],
           [1., 1.]])
    # number of features should be the same
    # returns the distance b/w each sample in 1 and 2
    
    pairwise_distances(arr1,arr2)
    array([[0.        , 0.        , 0.        , 0.        , 0.        ],
           [1.41421356, 1.41421356, 1.41421356, 1.41421356, 1.41421356],
           [1.41421356, 1.41421356, 1.41421356, 1.41421356, 1.41421356]])

Pandas

  1. dataframe
  • track_eval_df.to_csv(OUTPUT_LOCATION, index=False)

========================================================================

Common Functions

========================================================================

  1. Distance

    math.hypot(p2[0]-p1[0],p2[1]-p1[1], ....)    #hypotenuse
    np.linalg.norm(p2-p1)
  2. random number

    s = np.array([0,0])
    e = np.array([10,10])
    np.random.uniform(s,e)  #float
    np.random.uniform(s,e).astype(int) #int
    
    # multiple times: 
    #Return random floats in the half-open interval [0.0, 1.0).
    5 * np.random.random_sample((3, 2)) - 5
    # array([[-3.99149989, -0.52338984], # random
           [-2.99091858, -0.79479508],
           [-1.23204345, -1.75224494]])
  3. np array. see code

    • invert a np array
    • Other examples
      # access 
      arr = np.zeros((2,3,3))
      arr[1,2,3] =1
      # see a whole dimension 
      arr[1,2]    # see array([0., 0., 1.])
      # a tuple can access np array
      ls = [1,2]
      arr[tuple(ls)]  #see array([0., 0., 1.])
      
      #shape 
      print(arr.shape)    #see (4,)
      # ndim a smart way, because arr doesn't necessarily have a row number
      print(arr.ndim)     #see 1
      
      # stacking
      arr1 = np.array([1,2,3])
      # or creating an empty array: 
      arr1 = np.array([]).reshape(0,3)
      np.stack((arr1, arr2), axis=-1) #[1, 1], [2,2], [3,3]
      
      # has two random values
      np.empty([2]) 
      # same shape as arr
      np.zeros_like(arr)
      # copy an array 
      arr2 = np.copy(arr)
      
      # default is float, which DISTORTED COLORS.
      img = np.zeros((row_num, cln_num))
      img = np.zeros((row_num, cln_num), dtype=int)
      # or 
      img = img.astype(np.int)
      
      # Count non zeros: 
      num = np.count_nonzero(arr)
      
      # array indexing using another array
      a = np.array([1,1])
      arr = np.eye(3)
      arr[tuple(a.astype(int))]       #see 1
      
      # masking, np masking (Boolean indexing: shows only indices with True. Not applicable to list)
      arr = np.arange(5) #[0, ... 4]
      arr > 3 # see [F, F, T, T, T]
      arr[arr>3]  # actually applying a mask: showing only True ones
      arr1 == arr2 # gives [True, False, ...]
      np.array_equal(arr1, arr2)  #this gives the right T/F
      
      # reverse array
      np.flip(mat, axis=0)
      
      # Flatten 
      array([[1., 2., 3.],
         [0., 1., 0.],
         [0., 0., 9.]])
      arr.flatten()   # array([1., 2., 3., 0., 1., 0., 0., 0., 9.])
      
      # inf
      foo *= np.NINF
      np.isinf(foo)
      
      # transpose 
      arr.transpose()
      
      # dot product of two vectors
      np.dot(arr1, arr2)
      # applies element-wise multiplication
      arr1*arr2 
      
      # Broadcasting: two different shaped arrays may be added together, if the last dimension matches
      [1,2,3] +
      [
       [0,1,2],
       [2,3,4]
      ]    # each row is added by [1,2,3]
      # or scalar
      [1,2,3] + 5
      
      # max of whole array
      max_dim = np.max([3, img.ndim])
      
      # array comparison
      if (np.all(np.array(p[0]) < np.array(frame.shape[0:2]))): 
  4. KD tree

    from sklearn.neighbors import KDTree
  5. Open3D

    # add color
    # need every point to have a color
    pcd.colors = o3d.utility.Vector3dVector(np_rgb) # need to be in [0, 1], float
  6. click for creating cli tool

⚠️ **GitHub.com Fallback** ⚠️