Roadmap Artificial Intelligence (AI) - Rian010/Journal GitHub Wiki

Artificial Intelligence (AI) adalah pengembangan perangkat lunak yang mampu melakukan tugas yang seharusnya hanya dapat dilakukan oleh manusia. Berikut adalah roadmap AI:

Bab 1: Matematika dan Statistik

Bagian 1: Linear Algebra

  • Vector
  • Matrix
  • Determinants
  • Eigenvalues and eigenvectors

Bagian 2: Calculus

  • Derivatives
  • Integrals
  • Limits
  • Optimization

Bagian 3: Probability and Statistics

  • Bayesian probability
  • Maximum likelihood estimation
  • Hypothesis testing
  • Regression analysis

Bab 2: Machine Learning

Bagian 1: Supervised Learning

  • Linear regression
  • Logistic regression
  • Support vector machines
  • Random forests

Bagian 2: Unsupervised Learning

  • Clustering algorithms
  • Dimensionality reduction
  • Anomaly detection

Bagian 3: Deep Learning

  • Neural networks
  • Convolutional neural networks
  • Recurrent neural networks
  • Reinforcement learning

Bab 3: Natural Language Processing (NLP)

Bagian 1: Text Preprocessing

  • Tokenization
  • Stop words removal
  • Lemmatization
  • Part-of-speech tagging

Bagian 2: Word Embeddings

  • One-hot encoding
  • Word2Vec
  • GloVe
  • FastText

Bagian 3: Sequence Models

  • Long short-term memory
  • Gated recurrent units
  • Transformers
  • Attention mechanisms

Bab 4: Computer Vision

Bagian 1: Image Preprocessing

  • Filtering
  • Edge detection
  • Feature extraction
  • Augmentation

Bagian 2: Object Detection

  • Region proposal networks
  • Classification and bounding box prediction
  • Non-max suppression
  • Tracking objects

Bagian 3: Scene Understanding

  • Semantic segmentation
  • Instance segmentation
  • Panoptic segmentation
  • 3D reconstruction

Bab 5: Robotics

Bagian 1: Kinematics and Dynamics

  • Forward kinematics
  • Inverse kinematics
  • Jacobians
  • Dynamics equations

Bagian 2: SLAM

  • Visual simultaneous localization and mapping
  • LiDAR-based SLAM
  • RGB-D SLAM
  • Graph-based SLAM

Bagian 3: Planning and Control

  • Trajectory generation
  • Model predictive control
  • Feedback linearization
  • Observer design

Referensi: The Ultimate AI and Machine Learning Resource Guide Deep Learning Specialization by Andrew Ng