Fibonacci - RahulKushwaha/Algorithms GitHub Wiki

Fibonacci numbers:

F(n) = F(n - 1) + F(n - 2)
F(1) = 
F(2) = 1

Recursive definition:

int fibo(int n){
	if(n <= 2){
		return 1;
	}

	return fibo(n - 1) + fibo(n - 2)
}

Recursion with Memoization:

unordered_map<int, int> lookup;

int fibo(int n){
	unordered_map<int, int>::iterator itr = lookup.find(n);
	if(itr != lookup.end()){
		return *(itr->second);
	}

	int result = fibo(n - 1) + fibo(n - 2);
	lookup[n] = result; 
	return result; 
}

Iterative method

int fibo(int n){
	if(n <= 2){
		return 1;
	}

	int a = 1, b = 1, c = 0;
	for(int i = 0; i < n - 2; i ++){
		c = a + b;
		a = b;
		b = c;
	}

	return c;
}

Matrix Method

X = |1 1|
    |1 0|
Y = |F(n + 1) F(n)    |
    |F(n)     F(n - 1)|

X^n = Y

To multiply the matrix n times we can use binary exponentiation to reduce time complexity to O(lg(n))

⚠️ **GitHub.com Fallback** ⚠️