Paddle Error Message Writing Specification - PaddlePaddle/Paddle GitHub Wiki
Paddle Error Message Writing Specification (English Version)
规范概要:
- 第1节,报错文案书写模板,属于推荐参考的形式,根据情景不同,如果有简洁并且更易于用户理解的写法,可以灵活使用
- 第2节,强制性规范条目,为必须遵守的报错信息书写规则,前四条已加入CI监控
- 第3节,报错信息规范示例库,是从Paddle中抽取的一些已有的PADDLE_ENFORCE,将其改写为合规的示例,便于参考
- 附录,后续对规范完善时,首先在附录中阐明依据以及要修改的内容,作为备案,再对规范的正文内容进行修改
补充说明:
- 规范在执行过程中,可能会发现现有规范未考虑到的方面,需要在实施过程中不断补充与完善,也请大家积极反馈意见
- 当前版本的规范中有12种错误类型,如果发现未能覆盖的错误类型,可以申请补充
- 报错信息规范示例库,示例越丰富,越有参考价值,非常鼓励大家补充新的示例
- 规范匹配情况较为复杂,可能出现符合规范的写法被匹配为不合规,届时请找 chenwhql(陈威行) approve
-
Paddle报错信息文案书写规范
- 1. 报错文案书写模板
- 2. 强制性规范条目
-
3. 报错信息规范示例库
- 1. InvalidArgument - 参数有误
- 2. NotFound - 未找到目标
- 3. OutOfRange - 越界错误
- 4. AlreadyExists - 目标已存在 / 目标重复
- 5. PermissionDenied - 操作不允许
- 6. ResourceExhausted - 资源耗尽
- 7. PreconditionNotMet - 前提条件有误
- 8. ExecutionTimeout - 执行超时
- 9. Unimplemented - 功能尚未实现
- 10. Unavailable - 服务不可用
- 11. Fatal - 严重错误
- 12. External - 外部 / 第三方库错误
- 4. 规范更新与补充
- 附录
Paddle中的报错提示文案均推荐按照以下结构书写,具体包括:
- Python端raise各类错误的提示信息
- C++端PADDLE_ENFORCE_*与PADDLE_THROW的提示信息
注:文案的关键是要将错误描述清楚,模板仅供参考
第一段:指明错误(必写)
-
直接陈述错误:
- 推荐的描述:
- A出错,B没有初始化,C不存在,D的值不正确,E不匹配等
- 示例:
Mismatched label shape.
- 示例:
- A出错,B没有初始化,C不存在,D的值不正确,E不匹配等
- 不推荐的描述:A应该怎么样,B不应该怎么样
- 出错了,首先直接告诉用户出错即可
- 除非必要,不建议以应该/不应该的语气指出错误
- 应该或者不应该如何,属于第二段的阐述期望结果的内容
- 推荐的描述:
-
本段注意事项:
- 属性变量要指明错误的主体,例如Op输入输出要写明是哪个Op的输入输出错误,区分前反向Op
- 指明错误是告诉用户一个事实,一般不允许出现magic number(意义不明的数字),用英语句子陈述即可
第二段:期望值与实际值对比(尽可能提供)
-
写明此处期望的输入是什么,而实际的输入是什么
- 示例:
Expected labels dimension=1. Received 4.
- 示例:
-
本段注意事项:
- 将必要信息提供完整,比如Shape出错,需要将具体的Shape输出进行对比,并指明出错的维度
- 如果第一段的错误是单值描述,本段可以省略。例如A为空指针,B不存在,没必要在此处写明期望A不为空,B应该存在等
第三段:修改建议(尽可能提供)
-
写明此处的错误可能是由什么导致的,应该如何修改
- 示例:
Suggested Fix: If your classifier expects one-hot encoding label,check your n_classes argument to the estimatorand/or the shape of your label.Otherwise, check the shape of your label.
- 示例:
-
本段注意事项:
- 可以写明修改建议的情况一般适用于一些共性问题,例如
- startup_program没有执行
- 某个重要参数没有设置
- 某个环境配置可能有问题
- 可以写明修改建议的情况一般适用于一些共性问题,例如
PADDLE_ENFORCE_*与PADDLE_THROW的提示信息书写必须遵循以下条目:
1. C++端原则上不允许使用PADDLE_ENFORCE
表达式(CI有监控)
详细内容请参考PADDLE_ENFORCE 改写规范
2. 不允许省略或为空字符串(CI有监控)
- 错误示例:
PADDLE_ENFORCE(ctx->HasInput("X"));
PADDLE_ENFORCE(ctx->HasInput("X"), "");
3. 不允许提示过短,至少长于20个字符(CI有监控)
- 错误示例:
PADDLE_ENFORCE(i != nullptr, "I must be set");
4. 必须指明错误类型(CI有监控)
-
Python端直接选择合适的Python类型错误即可
-
C++端当前声明了12种错误类型(具体见第三节中的详细示例)
- InvalidArgument:参数错误
- NotFound:目标未找到
- OutOfRange:越界错误
- AlreadyExists:目标已存在,目标重复
- ResourceExhausted:资源耗尽
- PreconditionNotMet:前提条件不满足
- PermissionDenied:操作不允许
- ExecutionTimeout:执行超时
- Unimplemented:功能未实现
- Unavailable:服务不可用
- Fatal:严重错误
- External:外部错误,第三方库错误
用法概要: 在整个错误提示字符串(包含变长参数列表)的外面包裹
platform::errors::ErrorType()
简要示例(注意后面括号的位置):
- 旧:
PADDLE_ENFORCE(true, "example: %s", str);
- 新:
PADDLE_ENFORCE(true, platform::errors::InvalidArgument("example: %s", str));
正确示例:
PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
platform::errors::InvalidArgument("The input tensor Y's dimensions of MulOp "
"should be larger than y_num_col_dims. But received Y's "
"dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
y_dims.size(), y_dims, y_num_col_dims));
错误示例:
PADDLE_ENFORCE_GT(y_dims.size(), y_num_col_dims,
"The input tensor Y's dimensions of MulOp "
"should be larger than y_num_col_dims. But received Y's "
"dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
y_dims.size(), y_dims, y_num_col_dims);
注意:__CUDA_ARCH__下的PADDLE_ENFORCE尚不支持声明错误类型,如果遇到,找审核人员approve即可
4. 不允许在提示中使用C++端开发人员定义的变量缩写,应展开为完整英语单词
错误示例:
PADDLE_ENFORCE(forward_pd != nullptr,
"Fail to find eltwise_fwd_pd in device context");
5. 确保提示不存在语法错误
错误示例:
PADDLE_ENFORCE(context->HasInput("X"),
"ArrayToLoDTensorOp must has input X."); //must has?
考虑到开发者对于前述标准理解存在差异,对于错误的归类也可能存在疑惑,所以此处尽可能地提供了各类错误的示例,以及相关提示的参考写法,请开发者在优化报错信息的时候,主动参考此处的规范示例。
用户传入了非法的参数,包含各种参数类型错误,应该是最为普遍的错误类型
1.1 ShapeError
PADDLE_ENFORCE_EQ(
output_shape[unk_dim_idx] * capacity, -in_size,
platform::errors::InvalidArgument(
"The 'shape' attribute in ReshapeOp is invalid. "
"The input tensor X'size must be divisible by known "
"capacity of 'shape'. "
"But received X's shape = [%s], X's size = %d, "
"'shape' is [%s], known "
"capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity));
1.2 参数为空(列表为空,空指针等)
PADDLE_ENFORCE_NE(vars.empty(), true, platform::errors::InvalidArgument(
"Variable names are empty."));
1.3 参数有误,与预期值不相等
PADDLE_ENFORCE_GT(batch_size, 0, platform::errors::InvalidArgument(
"Batch size %d is illegal.", batch_size));
PADDLE_ENFORCE_NE(
num, 0,
platform::errors::InvalidArgument(
"The number of ids can not be zero, you need padding "
"it in data generator, or if there is something wrong with "
"the data, please check if the data contains unresolvable "
"characters.\nplease check this error line: %s.",
str));
1.4 参数格式错误
PADDLE_ENFORCE_NE(in.format(), MKLDNNMemoryFormat::format_undef,
platform::errors::InvalidArgument(
"Input tensor format is invalid. Input tensor should "
"have specified memory format."));
1.5 参数未初始化
PADDLE_ENFORCE_EQ(proto_->IsInitialized(), true,
platform::errors::InvalidArgument(
"Operator's Proto in op info is not initialized."));
PADDLE_ENFORCE_EQ(
t->IsInitialized(), true,
platform::errors::InvalidArgument(
"The Tensor in the %s Op's Input Variable %s(%s) is "
"not initialized.",
Type(), name, ctx.Inputs(name).at(i)));
1.6 参数类型错误
PADDLE_ENFORCE(
tmp == *data_type || *data_type == dafault_data_type,
platform::errors::InvalidArgument(
"The DataType of %s Op's duplicable Variable %s must be "
"consistent. The current variable type is (%s), but the "
"previous variable type is (%s).",
Type(), name, DataTypeToString(tmp),
DataTypeToString(*data_type)));
PADDLE_ENFORCE_EQ(
valid, true,
platform::errors::InvalidArgument(
"Tensor holds the wrong type, it holds %s, but desires to be %s.",
DataTypeToString(type_),
DataTypeToString(DataTypeTrait<T>::DataType())));
1.7 参数解析错误
PADDLE_ENFORCE_EQ(success, true,
platform::errors::InvalidArgument(
"Fail to parse DataFeedDesc from string: %s.",
data_feed_desc_str.c_str()));
1.8 LoD错误
PADDLE_ENFORCE_GT(lod_level, 0, platform::errors::InvalidArgument(
"Input(X) Tensor of SequencePoolOp "
"does not contain LoD information."));
申请的实体找不到,要找的变量为空,输入输出不存在等
- 和空指针区分开,找不到变量和变量没有被正确赋值,是两个层面的概念
2.1 Op输入输出未找到
PADDLE_ENFORCE_EQ(
ctx->HasInput("X"), true,
platform::errors::NotFound("Input(X) of MulOp is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasInput("Y"), true,
platform::errors::NotFound("Input(Y) of MulOp is not found."));
PADDLE_ENFORCE_EQ(
ctx->HasOutput("Out"), true,
platform::errors::NotFound("Output(Out) of MulOp is not found."));
2.2 缺少节点
PADDLE_ENFORCE_NOT_NULL(
p, platform::errors::NotFound("subgraph has no node %s.", name.c_str()));
2.3 文件未找到
PADDLE_ENFORCE_GT(file_cnt, 0,
platform::errors::NotFound("Input file list is empty."));
2.4 其他
PADDLE_ENFORCE_NOT_NULL(
var_desc, platform::errors::NotFound("%s is not found.", var_name));
PADDLE_ENFORCE_NOT_NULL(
proto_,
platform::errors::NotFound("Operator's Proto has not been registered."));
PADDLE_ENFORCE_LT(
i, N, platform::errors::OutOfRange("Array index out of bounds."));
PADDLE_ENFORCE_GT(value, lower_bound_,
platform::errors::OutOfRange("Attribute GreaterThan check failed."));
查找的实体已存在,或者某些仅允许存在单个实例的个体,却找到了多个
PADDLE_ENFORCE_EQ(
attrs_.count(attr_name), 0,
platform::errors::AlreadyExists(
"The attribute %s has been set in the graph.", attr_name));
PADDLE_ENFORCE_NE(Has(pass_type), true,
platform::errors::AlreadyExists(
"Pass %s has been registered.", pass_type));
PADDLE_ENFORCE_LE(ins.size(), 1UL,
platform::errors::AlreadyExists(
"Operator %s's input %s should contain only one variable.", type_, name));
PADDLE_ENFORCE_EQ(
fused_var_set.count(fused_var_name), 0,
platform::errors::AlreadyExists(
"The fused variable already exists."));
当前操作不允许被执行。
PADDLE_ENFORCE_NE(a, b, platform::errors::PermissionDenied(
"Cannot connect the same node in the graph."));
PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
"\n\nOut of memory error on GPU %d. "
"Cannot allocate %s memory on GPU %d, "
"available memory is only %s.\n\n"
"Please check whether there is any other process using GPU %d.\n"
"1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
"2. If no, please decrease the batch size of your model.\n",
place_.device, string::HumanReadableSize(size), place_.device,
string::HumanReadableSize(avail), place_.device));
PADDLE_THROW_BAD_ALLOC(platform::errors::ResourceExhausted(
"\n\nOut of memory error on GPU %d. "
"Cannot allocate %s memory on GPU %d, "
"available memory is only %s.\n\n"
"Please check whether there is any other process using GPU %d.\n"
"1. If yes, please stop them, or start PaddlePaddle on another GPU.\n"
"2. If no, please try one of the following suggestions:\n"
" 1) Decrease the batch size of your model.\n"
" 2) FLAGS_fraction_of_gpu_memory_to_use is %.2lf now, "
"please set it to a higher value but less than 1.0.\n"
" The command is "
"`export FLAGS_fraction_of_gpu_memory_to_use=xxx`.\n\n",
gpu_id_, string::HumanReadableSize(size), gpu_id_,
string::HumanReadableSize(avail), gpu_id_,
FLAGS_fraction_of_gpu_memory_to_use));
当前执行的操作,需要一定的前提条件满足才能够执行
PADDLE_ENFORCE_NOT_NULL(
mutex_for_pick_file_,
platform::errors::PreconditionNotMet(
"You should call SetFileListMutex before PickOneFile"));
PADDLE_ENFORCE_NOT_NULL(
root_scope_,
platform::errors::PreconditionNotMet(
"root_scope should be set before creating thread scope."));
PADDLE_ENFORCE_NE(
fetched_var_it, fetched_vars->end(),
platform::errors::PreconditionNotMet(
"Cannot find fetched variable(%s). Perhaps the main_program "
"is not set to ParallelExecutor.",
var_name));
PADDLE_ENFORCE_EQ(finish_start_, true,
platform::errors::PreconditionNotMet(
"Datafeed has not started running yet."));
PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
platform::errors::PreconditionNotMet(
"The Input variable Y(%s) has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function.",
ctx->Inputs("Y").front());
PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
platform::errors::PreconditionNotMet(
"Please compile with NGRAPH first to use NGRAPH."));
执行响应时间过长,或者通信超时。
示例暂时未找到,有待后续添加。
尚未实现或支持,但之后有可能会实现
PADDLE_ENFORCE_NE(iter, operations_.end(),
platform::errors::Unimplemented(
"Operation %s is not supported yet.", op_type));
PADDLE_ENFORCE_EQ(
all_reduce_ops.size(), grads.size(),
platform::errors::Unimplemented(
"The number of all_reduce OpHandle is not equal to the "
"number of grads. Maybe some gradients are sparse type, "
"it is not supported currently."));
当前服务不可用,或当前操作不能执行。
10.1 IO错误
PADDLE_ENFORCE_NE(file_descriptor, -1, platform::errors::Unavailable(
"Cannot open file %s.", filename));
PADDLE_ENFORCE_EQ(fin.good(), true, platform::errors::Unavailable(
"Cannot open file %s.", filename));
PADDLE_ENFORCE_EQ(
file.is_open(), true,
platform::errors::Unavailable("Can not open %s to add benchmark.", path));
未预料到的,严重的错误,例如段错误。
用于后期增加 try-catch 处理非预期的异常,开发者暂时不会用到。
使用PADDLE_ENFORCE_CUDA_SUCCESS检查宏的时候,会自动封装这个错误类型,一般来说,不需要开发者专门指定这个类型
如果有除CUDA之外的类库使用可能会出错的话,也可以使用这个类型
-
Op InferShape的输入输出检查,报错类型和报错信息十分类似,但由于之前普遍没有添加报错类型,因此均需要修改。
-
添加了一个新的检查宏用于处理此类检查,用法示例如下:
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
-
只需要依次传入条件表达式,Input或者Output,Op输入输出名,Op名即可。
-
一方面简化代码,减少大家工作量,另一方面,这能够保证所有Op的输入输出检查报错信息均一致,统一之前存在的各种写法,避免语法问题。
-
但此宏的使用是非强制的,原先的写法合规也是可以的
详细内容见 PR23430
-
PADDLE_ENFORCE_CUDA_SUCCESS用于处理Cuda及其相关lib的错误,但该类错误环境原因居多,即使要求开发人员写报错信息,也较难起到关键的提示作用,使用CUDA官方提供的错误代码及描述是更好的选择,因此我们对该宏进行了升级
-
使用该宏时,直接在其中写CUDA的相关调用即可,不再需要写报错类型与报错信息,例如
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce(
src_ptr, dst_ptr, src.numel(), nccl_dtype, ncclSum, comm, stream));
详细内容见 PR23816
-
Paddle内有超过100处使用了Ref函数检查指针是否为空,并提示相关信息的不合规使用,使用Ref的地方多数没有报错信息,或者写的很短,而且不能告诉用户真实的报错位置,所以新增了GET_DATA_SAFELY宏替换Ref
-
GET_DATA_SAFELY宏仅推荐用于Op内获取输入输出的Variable或者Variable内持有LoDTensor、SelectedRows等,该宏会检查输入的指针是否为空,为空则根据模板和输入参数构建报错信息并抛出异常,不为空则返回改指针,示例如下:
GET_DATA_SAFELY(ctx.Input<LoDTensor>("X"), "Input", "X", "Mul");
详细内容见 PR22997
-
boost::get
是一个不安全的第三方库函数,get失败会直接抛出boost::bad_get
,不会有栈信息,也不会有出错文件与行号的提示,导致此类问题很难调试,所以新定义了BOOST_GET系列宏,替换了paddle中600多处使用boost::get
的地方 -
共新增了三个BOOST_GET宏,具体如下:
- BOOST_GET (e.g. return int& or int*)
- BOOST_GET_CONST(e.g. return const int& or const int*)
- BOOST_GET_MUTABLE (e.g. return int or int*)
这三个宏可以满足的paddle中对于boost::get
的使用
- CI中新增了规则,不允许直接使用
boost::get
,需要使用新增的BOOST_GET系列宏,如果不想使用BOOST_GET系列宏,可以为boost::get
加try-catch,然后找指定人员approve
详细内容见 PR24175
- LOG(FATAL)也可以在程序运行中抛出错误,但是抛出的错误难以阅读,无效信息多,且没有出错文件行号等关键信息,paddle中有100余处使用了LOG(FATAL),这些均替换为PADDLE_THROW,且在CI中禁止LOG(FATAL)的使用
用于备案规范的其他内容
报错格式上主要改动包括两点:
- 进一步精简报错栈,2.0版本默认隐藏C++栈,可通过设置
FLAGS_call_stack_level=2
恢复显示,此外,出现SegmentFault类严重错误时不隐藏C++栈,便于调试。 - 以python原生异常类型替代生僻的
paddle.fluid.core_avx.EnforceNotMet
,异常映射关系如下:
Paddle Exception mapping rules:
- InvalidArgumentError -> ValueError
- NotFoundError -> RuntimeError
- OutOfRangeError -> IndexError
- AlreadyExistsError -> RuntimeError
- ResourceExhaustedError -> MemoryError
- PreconditionNotMetError -> RuntimeError
- PermissionDeniedError -> RuntimeError
- ExecutionTimeoutError -> RuntimeError
- UnimplementedError -> NotImplementedError
- UnavailableError -> RuntimeError
- FatalError -> SystemError
- ExternalError -> OSError
改动前Paddle报错信息示例:
改动后Paddle报错信息示例:
隐藏C++栈的过渡期保留了如何显示C++栈的提示(见上图),该提示在2.0正式版中已删除
改动前Paddle报错信息示例:
改动后Paddle报错信息示例:
隐藏C++栈的过渡期保留了如何显示C++栈的提示(见上图),该提示在2.0正式版中已删除
原Paddle报错信息示例:
优化后Paddle报错信息示例:
以错误类型UNKNOWN
为例介绍:
第一步:在paddle/fluid/platform/error_codes.proto中添加新增的错误代码
UNKNOWN = 13;
第二步: 在paddle/fluid/platform/s.h中注册新增的错误类型
REGISTER_ERROR(Unknown, UNKNOWN)
第三步:在paddle/fluid/platform/errors.cc中添加新增的错误字符串
case paddle::platform::error::UNKNOWN:
return "UnknownError";
break;
第四步:在代码中使用
PADDLE_ENFORCE_EQ(flag, true, platform::errors::Unknown("example"));
如果现有的12种错误类型无法覆盖实际场景中遇到的错误,可以申请新增错误类型,在此处阐明
- 新增错误类型名
- 新增错误类型应用场景描述
- 新增错误类型PADDLE_ENFORCE示例(不少于3个)