Caffe2 Code Review - PaddlePaddle/Paddle GitHub Wiki
*** This is a draft! ***
Page 9 shows SimpleNet::Run and SimpleNet::RunAsync.:q
Both calls ops in the topologically sorted order; whereas SimpleNet::Run
calls OperatorBase::Run(stream_id=0)
, and SimpleNet::RunAsync
calls OperatorBased::RunAsync(stream_id=0)
.
OperatorBase::Run/RunAsync
are both virtual methods and are overloaded by Operator
, which derives from OperatorBase
. Also, Operator::Run/RunAsync
calls Operator::RunOnDevice
, which is what users are supposed to overload when they define their own operators. The difference is that Operator::Run
calls
- Context::SwitchToDeivce
- Operator::Run
- Context::FinishDevice
whereas Operator::RunAsync
calls only the first two:
- Context::SwitchToDeivce
- Operator::Run
So SimpleNet::Run
actually calls
workspace.CreateNet
calls C.create_net
:
def CreateNet(net, overwrite=False, input_blobs=None):
if input_blobs is None:
input_blobs = []
for input_blob in input_blobs:
C.create_blob(input_blob)
return CallWithExceptionIntercept(
C.create_net, C.last_failed_op_uuid, StringifyProto(net), overwrite)
C.create_net
calls gWorkspace->CreateNet
:
m.def(
"create_net",
[](py::bytes net_def, bool overwrite) {
caffe2::NetDef proto;
CAFFE_ENFORCE(
ParseProtobufFromLargeString(net_def, &proto),
"Can't parse net proto: ",
std::string(net_def));
CAFFE_ENFORCE(
gWorkspace->CreateNet(proto, overwrite),
"Error creating net with proto: ",
std::string(net_def));
return true;
},
py::arg("net_def"),
py::arg("overwrite") = kPyBindFalse);
where gWorkspace
is of type WorkSpace
.
Workspace::CreateNet
calls caffe2::CreateNet
:
net_map_[net_def.name()] =
unique_ptr<NetBase>(caffe2::CreateNet(net_def, this));
caffe2::CreateNet
calls SimpleNet
's constructor via make_unique
:
unique_ptr<NetBase> CreateNet(const NetDef& net_def, Workspace* ws) {
// In default, we will return a simple network that just runs all operators
// sequentially.
if (!net_def.has_type()) {
return make_unique<SimpleNet>(net_def, ws);
}
return NetRegistry()->Create(net_def.type(), net_def, ws);
}
SimpleNet::SimpleNet
call SimpleNet::CreateOperator
:
SimpleNet::SimpleNet(const NetDef& net_def, Workspace* ws)
: NetBase(net_def, ws) {
VLOG(1) << "Constructing SimpleNet " << net_def.name();
bool net_def_has_device_option = net_def.has_device_option();
// Initialize the operators
for (const OperatorDef& operator_def : net_def.op()) {
VLOG(1) << "Creating operator " << operator_def.name()
<< ":" << operator_def.type();
if (!operator_def.has_device_option() && net_def_has_device_option) {
// In the case that the operator def does not specify a device option but
// the net def has a default option, we copy the device option over to the
// operator def.
OperatorDef temp_def(operator_def);
temp_def.mutable_device_option()->CopyFrom(net_def.device_option());
operators_.emplace_back(CreateOperator(temp_def, ws));
} else {
operators_.emplace_back(CreateOperator(operator_def, ws));
}
}
}
where CreateOperator
is a global function
unique_ptr<OperatorBase> CreateOperator(
const OperatorDef& operator_def, Workspace* ws);
whose implementation class OpertorBase
's constructor, which creates blobs according to OperatorDef
:
OperatorBase::OperatorBase(const OperatorDef& operator_def, Workspace* ws)
: operator_ws_(ws),
operator_def_(operator_def),
arg_helper_(operator_def_) {
...
for (const string& output_str : operator_def_.output()) {
outputs_.push_back(CHECK_NOTNULL(ws->CreateBlob(output_str)));
}
}
Please note that all input/output blobs are created by calling Workspace::CreateBlob
, so the workspace would know all blobs.
Please be aware that the blob creation doesn't allocate tensor memory. It is Operator::Input/Output
who interpret blob's