[function] preprocess_amazon_reviews() - P3chys/textmining GitHub Wiki
Function: preprocess_amazon_reviews()
Purpose
Main orchestrator function that executes the complete text preprocessing pipeline for Amazon reviews data, from raw CSV input to analysis-ready dataset with visualizations.
Syntax
preprocess_amazon_reviews(file_path, sample_size=None, save_processed=True,
output_path='/content/drive/My Drive/Mendelka/TM/processed_amazon_reviews.csv')
Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
file_path |
str | Required | Path to the source CSV file containing Amazon reviews |
sample_size |
int or None | None | Number of rows to sample from dataset. None loads entire dataset |
save_processed |
bool | True | Whether to save the final processed DataFrame to file |
output_path |
str | Default Google Drive path | Destination path for saving processed data |
Returns
- Type: pandas.DataFrame
- Content: Fully processed dataset ready for text mining analysis
Pipeline Workflow
The function executes the following sequence of operations:
1. Data Loading
df = load_data(file_path, sample_size)
- Loads raw Amazon reviews data
- Handles tab-separated values
- Converts star ratings to numeric format
- Applies sampling if specified
2. Data Exploration
exploration_results = explore_data(df)
- Analyzes dataset structure and quality
- Calculates review length statistics
- Examines missing values
- Outputs dataset shape information
3. Text Preprocessing
df_processed = preprocess_dataframe(df)
- Cleans review text (HTML removal, lowercasing, etc.)
- Tokenizes text into individual words
- Adds processed text columns to DataFrame
4. Sentiment Classification
df_processed = create_binary_sentiment(df_processed)
- Creates binary sentiment labels based on star ratings
- Typically: 1-3 stars → negative, 4-5 stars → positive
- Adds sentiment column for analysis
5. N-gram Extraction
df_processed = extract_ngrams(df_processed)
- Generates 1-grams, 2-grams, and 3-grams
- Creates both tuple and string representations
- Enables phrase-level analysis
6. Visualization Generation
plot_rating_distribution(df_processed)
plot_review_length_distribution(df_processed)
plot_sentiment_distribution(df_processed)
- Creates three visualization files:
rating_distribution.pngreview_length_distribution.pngsentiment_distribution.png
7. Data Persistence
df_processed.to_csv(output_path, index=False)
- Saves processed DataFrame to CSV format
- Preserves all preprocessing results
- Enables reuse without reprocessing
Output Structure
The returned DataFrame contains all original columns plus:
Added Preprocessing Columns:
review_length- Word count per reviewcleaned_text- Cleaned review textprocessed_text- Tokenized review (list format)sentiment- Binary sentiment classification1grams,1grams_string- Unigrams2grams,2grams_string- Bigrams3grams,3grams_string- Trigrams
Logging Output
The function provides progress updates:
Loading data...
Exploring data...
Loaded dataset with shape: (1000000, 15)
Preprocessing text...
Creating binary sentiment labels...
Extracting n-grams...
Generating visualizations...
Saving processed data to /path/to/output.csv...
Preprocessing complete!
Dependencies
Required functions (must be defined before calling):
load_data()explore_data()preprocess_dataframe()create_binary_sentiment()extract_ngrams()plot_rating_distribution()plot_review_length_distribution()plot_sentiment_distribution()
Error Handling
No explicit error handling - caller responsible for:
- Ensuring file_path exists and is readable
- Verifying output_path directory permissions
- Managing memory for large datasets
Performance Considerations
- Memory Usage: Keeps full dataset in memory throughout pipeline
- Processing Time: Sequential execution means total time = sum of all steps
- Storage: Output file size approximately 3-4x larger than input due to added columns
Usage Examples
# Process entire dataset
df_full = preprocess_amazon_reviews('amazon_reviews.csv')
# Process sample for testing
df_sample = preprocess_amazon_reviews('amazon_reviews.csv',
sample_size=10000,
output_path='sample_processed.csv')
# Process without saving
df_temp = preprocess_amazon_reviews('amazon_reviews.csv',
save_processed=False)
Integration Notes
- Google Colab: Default output path assumes Google Drive mount
- Local Environment: Modify output_path for local file systems
- Batch Processing: For very large datasets, consider chunked processing
- Resumption: Check if output file exists to avoid reprocessing