Try - P2prod/Filter-Modeling-Simulation GitHub Wiki
Stay left
$y(x) = x^2+1
$
Stay left - another way
$$y(x) = 3 \cdot x^2+1$$
The Cauchy-Schwarz Inequality
$$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$$
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
$$ \fbox{$s_{n}=\frac{T_{1}}{T_{2}+T_{e}}\cdot e_{n}-\frac{T_{1}}{T_{2}+T_{e}}\cdot e_{n-1}+\frac{T_{2}}{T_{2}+T_{e}}\cdot s_{n-1}$} $$
https://quicklatex.com/cache3/53/ql_e0d7135036cacf37cf030583ad0e4053_l3.png
$v = \frac{1}{C} \cdot \int i \cdot dt$