OPTIMIZE - Open-Quantum-Platform/openqp GitHub Wiki

[OPTIMIZE]: Various Optimization Options of Minimum Geometry, MECI, TS, etc.

[OPTIMIZE] Defaults
Keyword Default Description
lib scipy Optimization engine.
optimizer bfgs Optimization algorithm.
step_size 0.1 Step size for optimization.
step_tol 1e-2 Tolerance for step size.
maxit 30 Maximum number of optimization iterations.
mep_maxit 10 Maximum iterations for MEP optimization.
rmsd_grad 1e-4 RMSD criteria for gradients.
rmsd_step 1e-3 RMSD criteria for step size.
max_grad 3e-4 Maximum gradient criteria.
max_step 2e-3 Maximum step size criteria.
istate 0 First state for optimization.
jstate 1 Second state for optimization.
energy_shift 1e-6 Energy shift criteria.
energy_gap 1e-5 Energy gap criteria.
meci_search penalty Method for MECI searching.
pen_sigma 1.0 Sigma value for penalty method.
pen_alpha 0.0 Alpha value for penalty method.
pen_incre 1.0 Increment for penalty method.
gap_weight 1.0 Weight for energy gap in optimization.
init_scf False Initial SCF option.
[OPTIMIZE] Details The **optimize** section handles geometry optimization.
  • lib: Choose the optimization library.
    • Options:
      • scipy: Use the scipy.optimize library. (Default)
      • dlfind: Use the DL-FIND library.
  • optimizer: Choose the scipy optimizer.
    • Options:
      • bfgs: Use the BFGS method. (Default)
      • cg: Use Conjugate Gradient.
      • l-bfgs-b: Use L-BFGS-b method.
      • newton-cg: Use Newton Conjugate Gradient.
  • step_size: Set the radius of the constraining hypersphere from the starting structure.
    • Default: 0.1 (the largest distance between the mass-weighted coordinates)
  • step_tol: Set the threshold for the radius on a hypersphere from the starting structure.
    • Default: 1e-2 (the smallest distance between the mass-weighted coordinates)
  • maxit: Set the maximum number of geometry optimization iterations.
    • Default: 30
  • mep_maxit: Set the maximum number of MEP steps.
    • Default: 10
  • rmsd_grad: Set the convergence threshold for RMSD of gradients.
    • Default: 1e-4
  • rmsd_step: Set the convergence threshold for RMSD of structure changes.
    • Default: 1e-3
  • max_grad: Set the convergence threshold for the maximum gradient.
    • Default: 3e-4
  • max_step: Set the convergence threshold for the maximum structure changes.
    • Default: 2e-3
  • istate: Choose the state for single-state optimization. This option is for either runtype=optimize, mep or meci. The latter requires setting the jstate too. In the case of HF/DFT calculation, istate=0. It should be emphasized that TDDFT can only calculate excited states. Thus, istate=1 for TDDFT means the first excited state (S1). However, both SF-TDDFT and MRSF-TDDFT can also calculate ground state. Therefore, istate=1 for these two theories correspond to the ground state (S0).
    • Note: Currently, time-dependent calculations ([input] method=tdhf) do not compute gradients for the reference state (grad=0).
    • Default: 1
  • jstate: Choose the second state for conical intersection optimization.
    • Default: 2
  • energy_shift: Set the convergence threshold for electronic energy changes.
    • Default: 1e-6
  • energy_gap: Set the convergence threshold for energy gap changes.
    • Default: 1e-5
  • meci-search: Choose the algorithm for conical intersection optimization.
    • Options:
      • penalty: Use the modified penalty method. (Default)
      • ubp: Use the Update Branching Plane method.

hybrid: Use the penalty function, then switch to ubp after the energy gap is below the threshold.

  • pen_sigma: Set the sigma in the penalty function.
    • Default: 1.0
  • pen_alpha: Set the alpha in the penalty function.
    • Default: 0.0
  • pen_incre: Set the incremental factor in the penalty function.
    • Default: 1.0
  • init_scf: Perform initial SCF iterations during geometry optimization.
    • Options:
      • True: Perform initial SCF iterations at every optimization step.
      • False: Do not perform initial SCF iterations after the first optimization step.

Back to Input File System with PyOQP

⚠️ **GitHub.com Fallback** ⚠️