OPTIMIZE - Open-Quantum-Platform/openqp GitHub Wiki
| Keyword | Default | Description |
|---|---|---|
| lib | scipy | Optimization engine. |
| optimizer | bfgs | Optimization algorithm. |
| step_size | 0.1 | Step size for optimization. |
| step_tol | 1e-2 | Tolerance for step size. |
| maxit | 30 | Maximum number of optimization iterations. |
| mep_maxit | 10 | Maximum iterations for MEP optimization. |
| rmsd_grad | 1e-4 | RMSD criteria for gradients. |
| rmsd_step | 1e-3 | RMSD criteria for step size. |
| max_grad | 3e-4 | Maximum gradient criteria. |
| max_step | 2e-3 | Maximum step size criteria. |
| istate | 0 | First state for optimization. |
| jstate | 1 | Second state for optimization. |
| energy_shift | 1e-6 | Energy shift criteria. |
| energy_gap | 1e-5 | Energy gap criteria. |
| meci_search | penalty | Method for MECI searching. |
| pen_sigma | 1.0 | Sigma value for penalty method. |
| pen_alpha | 0.0 | Alpha value for penalty method. |
| pen_incre | 1.0 | Increment for penalty method. |
| gap_weight | 1.0 | Weight for energy gap in optimization. |
| init_scf | False | Initial SCF option. |
-
lib: Choose the optimization library.
-
Options:
-
scipy: Use thescipy.optimizelibrary. (Default) -
dlfind: Use the DL-FIND library.
-
-
Options:
-
optimizer: Choose the scipy optimizer.
-
Options:
-
bfgs: Use the BFGS method. (Default) -
cg: Use Conjugate Gradient. -
l-bfgs-b: Use L-BFGS-b method. -
newton-cg: Use Newton Conjugate Gradient.
-
-
Options:
-
step_size: Set the radius of the constraining hypersphere from the starting structure.
-
Default:
0.1(the largest distance between the mass-weighted coordinates)
-
Default:
-
step_tol: Set the threshold for the radius on a hypersphere from the starting structure.
-
Default:
1e-2(the smallest distance between the mass-weighted coordinates)
-
Default:
-
maxit: Set the maximum number of geometry optimization iterations.
-
Default:
30
-
Default:
-
mep_maxit: Set the maximum number of MEP steps.
-
Default:
10
-
Default:
-
rmsd_grad: Set the convergence threshold for RMSD of gradients.
-
Default:
1e-4
-
Default:
-
rmsd_step: Set the convergence threshold for RMSD of structure changes.
-
Default:
1e-3
-
Default:
-
max_grad: Set the convergence threshold for the maximum gradient.
-
Default:
3e-4
-
Default:
-
max_step: Set the convergence threshold for the maximum structure changes.
-
Default:
2e-3
-
Default:
-
istate: Choose the state for single-state optimization. This option is for either runtype=optimize, mep or meci. The latter requires setting the jstate too. In the case of HF/DFT calculation, istate=0. It should be emphasized that TDDFT can only calculate excited states. Thus, istate=1 for TDDFT means the first excited state (S1). However, both SF-TDDFT and MRSF-TDDFT can also calculate ground state. Therefore, istate=1 for these two theories correspond to the ground state (S0).
-
Note: Currently, time-dependent calculations (
[input] method=tdhf) do not compute gradients for the reference state (grad=0). -
Default:
1
-
Note: Currently, time-dependent calculations (
-
jstate: Choose the second state for conical intersection optimization.
-
Default:
2
-
Default:
-
energy_shift: Set the convergence threshold for electronic energy changes.
-
Default:
1e-6
-
Default:
-
energy_gap: Set the convergence threshold for energy gap changes.
-
Default:
1e-5
-
Default:
-
meci-search: Choose the algorithm for conical intersection optimization.
-
Options:
-
penalty: Use the modified penalty method. (Default) -
ubp: Use the Update Branching Plane method.
-
-
Options:
hybrid: Use the penalty function, then switch to ubp after the energy gap is below the threshold.
-
pen_sigma: Set the sigma in the penalty function.
-
Default:
1.0
-
Default:
-
pen_alpha: Set the alpha in the penalty function.
-
Default:
0.0
-
Default:
-
pen_incre: Set the incremental factor in the penalty function.
-
Default:
1.0
-
Default:
-
init_scf: Perform initial SCF iterations during geometry optimization.
-
Options:
-
True: Perform initial SCF iterations at every optimization step. -
False: Do not perform initial SCF iterations after the first optimization step.
-
-
Options: