AI3 Tensor Engine - odelyzid/.AI3 GitHub Wiki
The AI3 (Artificial Intelligence Integrated Infrastructure) Tensor Engine is the revolutionary core of .AI3 that transforms traditional blockchain mining into productive AI computation. Instead of wasting energy on meaningless hash calculations, miners contribute to real AI workloads while securing the network.
AI3 replaces traditional proof-of-work mining with Proof-of-Useful-Work, where miners solve actual AI computation tasks:
Traditional Mining: AI3 Mining:
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Random Hash โ โ Matrix Multiply โ
โ Calculation โ โ โ Convolution โ
โ (Wasted Energy) โ โ Neural Forward โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ Block Found โ โ AI Task + Block โ
โ Network Secured โ โ Network Secured โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
- Productive Mining: Computational power contributes to AI research
- Lower Difficulty: AI tasks have reduced mining difficulty
- Enhanced Rewards: Bonus tokens for completing AI computations
- Real-World Value: Mining produces useful AI models and insights
- Energy Efficiency: More value per watt consumed
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ AI3 Tensor Engine โ
โโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ Task Queue โ Tensor Ops โ Result Validation โ
โโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โข Task Creation โ โข Matrix Ops โ โข Proof Generation โ
โ โข Distribution โ โข Convolution โ โข Result Verification โ
โ โข Prioritizationโ โข Activations โ โข Consensus Checking โ
โ โข Load Balancingโ โข Vector Ops โ โข Reward Distribution โ
โโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
โ ESP32/ESP8266 โ โ CPU Miners โ โ GPU Miners โ
โ IoT Devices โ โ General Comp โ โ High Perf โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ
// AI3 Mining Workflow
pub struct AI3MiningProcess {
// 1. Receive mining task
task: AI3Task,
// 2. Perform tensor computation
computation_result: TensorResult,
// 3. Generate cryptographic proof
proof: ComputationProof,
// 4. Combine with traditional PoW
block_hash: BlockHash,
// 5. Submit complete solution
solution: AI3Solution,
}// Optimized for various hardware capabilities
pub fn matrix_multiply(a: &Matrix, b: &Matrix) -> TribeResult<Matrix> {
// ESP32 optimization: 4x4 matrices
if is_esp32_device() {
return esp32_matrix_multiply_4x4(a, b);
}
// CPU optimization: arbitrary size with SIMD
if has_simd_support() {
return simd_matrix_multiply(a, b);
}
// Fallback: standard implementation
standard_matrix_multiply(a, b)
}
// Example task
let task = AI3Task {
operation: TensorOperation::MatrixMultiply,
input_a: Matrix::new(4, 4, vec![1.0, 2.0, 3.0, 4.0, ...]),
input_b: Matrix::new(4, 4, vec![0.1, 0.2, 0.3, 0.4, ...]),
difficulty_reduction: 0.3, // 30% easier than pure PoW
reward_multiplier: 1.5, // 50% bonus reward
};// 1D and 2D convolution for signal processing
pub fn convolution_1d(signal: &[f32], kernel: &[f32]) -> Vec<f32> {
let mut result = Vec::new();
for i in 0..signal.len() - kernel.len() + 1 {
let mut sum = 0.0;
for j in 0..kernel.len() {
sum += signal[i + j] * kernel[j];
}
result.push(sum);
}
result
}
// Example: Audio signal processing
let audio_signal = vec![1.0, 2.0, 3.0, 4.0, 5.0, 4.0, 3.0, 2.0, 1.0];
let smoothing_kernel = vec![0.25, 0.5, 0.25];
let filtered_signal = convolution_1d(&audio_signal, &smoothing_kernel);// Simple neural network inference
pub struct NeuralLayer {
weights: Matrix,
bias: Vec<f32>,
activation: ActivationFunction,
}
pub fn neural_forward_pass(
input: &[f32],
layers: &[NeuralLayer]
) -> TribeResult<Vec<f32>> {
let mut current_input = input.to_vec();
for layer in layers {
// Matrix multiplication: input * weights
let weighted = matrix_vector_multiply(&layer.weights, ¤t_input)?;
// Add bias
let biased: Vec<f32> = weighted.iter()
.zip(&layer.bias)
.map(|(w, b)| w + b)
.collect();
// Apply activation function
current_input = apply_activation(&biased, &layer.activation);
}
Ok(current_input)
}// Various activation functions optimized for different hardware
pub enum ActivationFunction {
ReLU,
Sigmoid,
Tanh,
Softmax,
}
pub fn apply_activation(input: &[f32], func: &ActivationFunction) -> Vec<f32> {
match func {
ActivationFunction::ReLU => {
input.iter().map(|&x| x.max(0.0)).collect()
},
ActivationFunction::Sigmoid => {
input.iter().map(|&x| 1.0 / (1.0 + (-x).exp())).collect()
},
ActivationFunction::Tanh => {
input.iter().map(|&x| x.tanh()).collect()
},
ActivationFunction::Softmax => {
let max_val = input.iter().fold(f32::NEG_INFINITY, |a, &b| a.max(b));
let exp_vals: Vec<f32> = input.iter().map(|&x| (x - max_val).exp()).collect();
let sum: f32 = exp_vals.iter().sum();
exp_vals.iter().map(|&x| x / sum).collect()
}
}
}// ESP32-specific optimizations
pub struct ESP32TensorOps;
impl ESP32TensorOps {
// Optimized 4x4 matrix multiplication for ESP32
pub fn matrix_multiply_4x4(a: &[[f32; 4]; 4], b: &[[f32; 4]; 4]) -> [[f32; 4]; 4] {
let mut result = [[0.0; 4]; 4];
// Unrolled loops for better performance on ESP32
for i in 0..4 {
for j in 0..4 {
result[i][j] = a[i][0] * b[0][j] +
a[i][1] * b[1][j] +
a[i][2] * b[2][j] +
a[i][3] * b[3][j];
}
}
result
}
// Memory-efficient convolution for limited RAM
pub fn convolution_streaming(
signal_chunk: &[f32],
kernel: &[f32],
overlap: &mut Vec<f32>
) -> Vec<f32> {
// Process signal in chunks to fit in ESP32 memory
let mut extended_chunk = overlap.clone();
extended_chunk.extend_from_slice(signal_chunk);
let result = convolution_1d(&extended_chunk, kernel);
// Update overlap for next chunk
*overlap = extended_chunk[extended_chunk.len() - kernel.len() + 1..].to_vec();
result
}
}// SIMD optimizations for x86/ARM processors
#[cfg(target_arch = "x86_64")]
use std::arch::x86_64::*;
pub fn simd_matrix_multiply(a: &Matrix, b: &Matrix) -> TribeResult<Matrix> {
// Use AVX2 instructions for parallel computation
unsafe {
// Implementation using SIMD intrinsics
// 8 float operations per instruction
}
}
// GPU acceleration using compute shaders
#[cfg(feature = "gpu")]
pub fn gpu_tensor_operation(operation: &TensorOperation) -> TribeResult<TensorResult> {
// Use wgpu or similar for GPU computation
// Massively parallel tensor operations
}// AI3 tasks have reduced difficulty compared to pure PoW
pub struct DifficultyCalculator {
base_difficulty: u64,
ai3_reduction_factor: f64,
operation_complexity: OperationComplexity,
}
impl DifficultyCalculator {
pub fn calculate_ai3_difficulty(&self, operation: &TensorOperation) -> u64 {
let complexity_multiplier = match self.operation_complexity {
OperationComplexity::Low => 0.5, // 50% of base difficulty
OperationComplexity::Medium => 0.7, // 70% of base difficulty
OperationComplexity::High => 0.9, // 90% of base difficulty
};
(self.base_difficulty as f64 * complexity_multiplier) as u64
}
}// Enhanced rewards for AI3 mining
pub struct AI3Rewards {
base_mining_reward: f64,
ai3_bonus_percentage: f64,
operation_bonus: HashMap<TensorOperation, f64>,
}
pub fn calculate_mining_reward(
block_reward: f64,
ai3_task: Option<&AI3Task>
) -> (f64, f64, f64) { // (TRIBE, STOMP, AUM)
let mut tribe_reward = block_reward;
let mut stomp_reward = 0.0;
let mut aum_reward = 0.0;
if let Some(task) = ai3_task {
// AI3 bonus in TRIBE
tribe_reward *= 1.3; // 30% bonus
// Additional STOMP for governance participation
stomp_reward = block_reward * 0.1;
// AUM tokens for AI computation
aum_reward = match task.operation {
TensorOperation::MatrixMultiply => 2.0,
TensorOperation::Convolution => 1.5,
TensorOperation::NeuralForward => 3.0,
TensorOperation::Activation => 1.0,
};
}
(tribe_reward, stomp_reward, aum_reward)
}// Cryptographic proof that computation was performed correctly
pub struct ComputationProof {
input_hash: Hash,
output_hash: Hash,
intermediate_hashes: Vec<Hash>,
nonce: u64,
timestamp: u64,
}
pub fn generate_computation_proof(
input: &TensorData,
output: &TensorData,
operation: &TensorOperation
) -> ComputationProof {
let input_hash = hash_tensor_data(input);
let output_hash = hash_tensor_data(output);
// Generate intermediate hashes for verification
let intermediate_hashes = generate_intermediate_proofs(input, output, operation);
ComputationProof {
input_hash,
output_hash,
intermediate_hashes,
nonce: generate_nonce(),
timestamp: current_timestamp(),
}
}
// Verify computation proof
pub fn verify_computation_proof(
proof: &ComputationProof,
expected_output: &TensorData
) -> bool {
// Verify output hash matches
let computed_hash = hash_tensor_data(expected_output);
if computed_hash != proof.output_hash {
return false;
}
// Verify intermediate steps
verify_intermediate_proofs(&proof.intermediate_hashes)
}// Multiple miners verify AI3 computations
pub struct AI3Consensus {
required_confirmations: usize,
verification_threshold: f64,
}
impl AI3Consensus {
pub fn validate_ai3_block(&self, block: &Block) -> bool {
if let Some(ai3_data) = &block.ai3_data {
// Get verification from multiple miners
let verifications = self.get_verification_results(&ai3_data);
// Require majority consensus
let success_rate = verifications.iter()
.filter(|&&result| result)
.count() as f64 / verifications.len() as f64;
success_rate >= self.verification_threshold
} else {
true // Regular PoW block
}
}
}| Device | Matrix 4x4 | Convolution | Neural Forward | Power Usage |
|---|---|---|---|---|
| ESP32 | 45ms | 20ms | 35ms | 2.5W |
| ESP32-S3 | 30ms | 15ms | 25ms | 3.0W |
| Raspberry Pi 4 | 15ms | 8ms | 12ms | 5.0W |
| Intel i5 | 2ms | 1ms | 3ms | 65W |
| RTX 3060 | 0.1ms | 0.05ms | 0.2ms | 170W |
// Performance per watt calculations
pub struct EfficiencyMetrics {
operations_per_second: f64,
power_consumption: f64,
efficiency_score: f64, // ops/sec per watt
}
// ESP32 is surprisingly efficient for its cost
let esp32_efficiency = EfficiencyMetrics {
operations_per_second: 22.0, // ~22 matrix ops/sec
power_consumption: 2.5, // 2.5 watts
efficiency_score: 8.8, // 8.8 ops/sec/watt
};
// High-end GPU has raw power but lower efficiency
let rtx3060_efficiency = EfficiencyMetrics {
operations_per_second: 10000.0, // 10k matrix ops/sec
power_consumption: 170.0, // 170 watts
efficiency_score: 58.8, // 58.8 ops/sec/watt
};- Federated Learning: Distributed model training across miners
- Model Compression: Efficient neural network quantization
- Edge AI: Specialized models for IoT devices
- Reinforcement Learning: Game-playing and optimization tasks
- Computer Vision: Image processing and recognition tasks
// Future tensor operations in development
pub enum FutureTensorOps {
// Transformer attention mechanisms
MultiHeadAttention {
query: Matrix,
key: Matrix,
value: Matrix,
num_heads: usize,
},
// Graph neural networks
GraphConvolution {
node_features: Matrix,
adjacency_matrix: Matrix,
edge_weights: Vec<f32>,
},
// Quantum-inspired operations
QuantumGate {
state_vector: Vec<Complex<f32>>,
gate_matrix: Matrix,
},
}// Easy integration for developers
use tribechain_ai3::prelude::*;
// Create custom tensor operation
let custom_op = TensorOperationBuilder::new()
.name("custom_convolution")
.input_shape([32, 32, 3])
.kernel_size([3, 3])
.difficulty_reduction(0.4)
.reward_multiplier(1.6)
.build()?;
// Submit to network
let task_id = ai3_engine.submit_operation(custom_op).await?;// Comprehensive testing for AI3 operations
#[cfg(test)]
mod ai3_tests {
use super::*;
#[test]
fn test_matrix_multiply_correctness() {
let a = Matrix::identity(4);
let b = Matrix::random(4, 4);
let result = matrix_multiply(&a, &b).unwrap();
assert_eq!(result, b); // Identity matrix property
}
#[test]
fn test_esp32_optimization() {
let esp32_result = ESP32TensorOps::matrix_multiply_4x4(&a, &b);
let standard_result = standard_matrix_multiply(&a, &b);
assert_tensor_equal(esp32_result, standard_result, 1e-6);
}
}- ESP32 Mining Guide - Hardware-specific AI3 implementation
- Mining Algorithms - Detailed algorithm explanations
- Performance Tuning - Optimization techniques
- API Reference - AI3 programming interface
- Tensor Operations - Mathematical foundations
The AI3 Tensor Engine represents the future of productive blockchain mining, where computational power contributes to advancing artificial intelligence while securing the network.