Mechanical - Moosevellous/Trace GitHub Wiki

Go to...
Solid Duct
Flex Duct
End Reflection Loss
Elbow/Bend
Duct Split
Silencer
Duct Directivity
Louvre Directivity
Louvres
Plenum
Duct Breakout
Duct Break-in
Regenerated noise
Dampers
Elbow/Bend
Silencers

Mech Elements

Solid Duct

Predicts the down-duct attenuation from solid ducts (lined or unlined) according to 2 methods. Reynolds method uses empirically derived formula to estimate the attenuation given the input parameters. The ASHRAE method selects the closest dimensions from the tables of data provided in their documentation.

frmSolidDuct.JPG

Reynolds Method

Function GetReynoldsDuct(freq As String, H As Double, w As Double, thickness As Double, L As Double)

Note that all parameters are input as millimetres, except for Length, which is input as metres.

The insertion loss is calculated using the formula:

IL = (3.281 * b(i)) * ((0.305 * PonA) ^ c(i)) * ((0.039 * thickness) ^ d(i)) * L

where the PonA is the ratio of perimeter to area of the duct and values of b , c and d are defined as:

constant 63 125 250 500 1k 2k 4k 8k
b 0.0133 0.0574 0.271 1.0147 1.77 1.392 1.518 1.581
c 1.959 1.41 0.824 0.5 0.695 0.802 0.451 0.219
d 0.917 0.941 1.079 1.087 0 0 0 0

For 250Hz octave band and below, additional attenuation is calculated using:

Attn = 0.066 * ((0.305 * PonA) ^ 0.8) * L

for 500Hz octave band and above, if PonA>=10

Attn = 55.8 * ((0.305 * PonA) ^ -0.25) * (f ^ -0.85) * L

for 500Hz octave band and above, if PonA<10

Attn = 5.38 * ((0.305 * PonA) ^ 0.73) * (f ^ -0.58) * L

The value returned is then the sum of the insertion loss and additional attenuation. The maximum allowable value returned is -40dB.

[Back to top]

ASHRAE Table

Function GetASHRAEDuct(freq As String, H As Long, w As Long, DuctType As String, Length As Double)

Sound attenuation of sheet metal ducts are outlined in ASHRAE handbook, Chapter 48 ”Noise and Vibration Control”. The handbook provides the insertion loss values of a given duct size at each frequency and is given by:

  • Dimensions of duct – width and height (in mm)
  • Length of duct (in m)

The insertion loss values are provided in the following tables:

1. Unlined rectangular sheet metal ducts
Duct size, mm 63Hz 125Hz 250Hz >250Hz
150 x 150 0.98 0.66 0.33 0.33
305 x 305 1.15 0.66 0.33 0.20
305 x 610 1.31 0.66 0.33 0.16
610 x 610 0.82 0.66 0.33 0.10
1220 x 1220 0.49 0.33 0.23 0.07
1830 x 1830 0.33 0.33 0.16 0.07
2. Rectangular sheet metal ducts with 25mm fibreglass lining
Duct size, mm 125Hz 250Hz 500Hz 1000Hz 2000Hz 4000Hz
150 150 2.0 4.9 8.9 19.0 24.3 14.1
150 250 1.6 3.9 7.9 16.7 20.0 12.1
200 200 1.6 3.9 7.5 16.4 19.0 11.8
150 300 1.6 3.9 7.5 16.4 19.0 11.8
200 300 1.3 3.3 6.9 14.8 16.1 10.5
250 250 1.3 3.3 6.9 14.4 15.4 10.2
150 460 1.6 3.3 7.2 15.4 17.1 10.8
300 300 1.3 2.6 6.2 13.1 13.5 9.2
200 460 1.3 3.0 6.6 14.1 14.8 9.8
250 410 1.3 2.6 6.2 13.1 13.1 8.9
200 610 1.3 2.6 6.2 13.1 13.5 9.2
250 510 1.0 2.6 5.9 12.5 12.1 8.5
300 460 1.0 2.3 5.6 12.1 11.5 8.2
380 380 1.0 2.3 5.6 11.8 10.8 7.9
300 610 1.0 2.0 5.6 11.5 10.5 7.5
250 760 1.0 2.3 5.6 11.8 10.8 7.9
460 460 1.0 2.0 5.2 10.8 9.5 7.2
380 560 1.0 2.0 5.2 10.8 9.5 7.2
300 910 1.0 2.0 5.2 10.8 9.5 7.2
380 760 1.0 1.6 4.9 10.2 8.5 6.6
460 710 0.7 1.6 4.6 9.8 7.9 6.2
610 610 0.7 1.6 4.6 9.2 7.2 5.9
460 910 0.7 1.6 4.6 9.2 7.2 5.9
380 1140 0.7 1.6 4.6 9.5 7.9 6.2
610 910 0.7 1.3 3.9 8.5 6.2 5.2
760 760 0.7 1.3 3.9 8.2 5.9 5.2
460 1370 0.7 1.3 4.3 8.9 6.6 5.6
610 1220 0.7 1.3 3.9 7.9 5.6 4.9
910 910 0.7 1.0 3.6 7.5 5.2 4.6
760 1140 0.7 1.0 3.6 7.5 5.2 4.6
610 1830 0.7 1.0 3.6 7.5 5.2 4.6
1070 1070 0.7 1.0 3.3 6.9 4.6 4.3
760 1520 0.7 1.0 3.6 7.2 4.6 4.3
910 1370 0.3 1.0 3.3 6.9 4.3 3.9
1220 1220 0.3 1.0 3.3 6.6 3.9 3.9
910 1830 0.3 1.0 3.3 6.6 3.9 3.9
910 1830 0.3 0.7 3.0 6.2 3.6 3.6
760 2290 0.3 1.0 3.3 6.9 4.3 3.9
1070 1630 0.3 1.0 3.0 6.2 3.9 3.6
1220 1830 0.3 0.7 3.0 5.9 3.3 3.3
1070 2130 0.3 0.7 3.0 5.9 3.6 3.6
1020 2440 0.3 0.7 2.6 5.6 3.3 3.3
1070 3200 0.3 0.7 3.0 5.6 3.3 3.3
1020 3660 0.3 0.7 2.6 5.2 3.0 3.0
3. Rectangular sheet metal ducts with 50mm fibreglass lining
Duct size, mm 125 250 500 1000 2000 4000
150 150 2.6 9.5 16.1 23.6 24.3 14.1
150 250 2.3 7.9 14.4 21.0 20.0 12.1
200 200 2.0 7.5 13.8 20.3 19.0 11.8
150 300 2.0 7.5 13.8 20.3 19.0 11.8
200 300 2.0 6.2 12.8 18.4 16.1 10.5
250 250 2.0 6.2 12.5 18.0 15.4 10.2
150 460 2.0 6.9 13.1 19.0 17.1 10.8
300 300 1.6 5.2 11.5 16.4 13.5 9.2
200 460 1.6 5.9 12.1 17.7 14.8 9.8
250 410 1.6 5.2 11.2 16.4 13.1 8.9
200 610 1.6 5.2 11.5 16.4 13.5 9.2
250 510 1.3 4.9 10.8 15.7 12.1 8.5
300 460 1.3 4.6 10.5 15.1 11.5 8.2
380 380 1.3 4.3 10.2 14.8 10.8 7.9
300 610 1.3 4.3 9.8 14.1 10.5 7.5
250 760 1.3 4.3 10.2 14.8 10.8 7.9
460 460 1.3 3.9 9.5 13.5 9.5 7.2
380 560 1.3 3.9 9.5 13.5 9.5 7.2
300 910 1.3 3.9 9.5 13.5 9.5 7.2
380 760 1.0 3.6 8.9 12.8 8.5 6.6
460 710 1.0 3.3 8.5 12.1 7.9 6.2
610 610 1.0 3.0 8.2 11.5 7.2 5.9
460 910 1.0 3.0 8.2 11.5 7.2 5.9
380 1140 1.0 3.3 8.5 11.8 7.9 6.2
610 910 1.0 2.6 7.5 10.5 6.2 5.2
760 760 0.7 2.6 7.2 10.2 5.9 5.2
460 1370 1.0 2.6 7.5 10.8 6.6 5.6
610 1220 0.7 2.3 7.2 9.8 5.6 4.9
910 910 0.7 2.3 6.6 9.5 5.2 4.6
760 1140 0.7 2.3 6.6 9.5 5.2 4.6
610 1830 0.7 2.3 6.6 9.5 5.2 4.6
1070 1070 0.7 2.0 6.2 8.5 4.6 4.3
760 1520 0.7 2.0 6.2 8.9 4.6 4.3
910 1370 0.7 2.0 6.2 8.5 4.3 3.9
1220 1220 0.7 1.6 5.9 8.2 3.9 3.9
910 1830 0.7 1.6 5.9 8.2 3.9 3.9
910 1830 0.7 1.6 5.6 7.5 3.6 3.6
760 2290 0.7 1.6 5.9 8.5 4.3 3.9
1070 1630 0.7 1.6 5.6 7.9 3.9 3.6
1220 1830 0.7 1.3 5.2 7.5 3.3 3.3
1070 2130 0.7 1.6 5.2 7.5 3.6 3.6
1020 2440 0.3 1.3 4.9 6.9 3.3 3.3
1070 3200 0.3 1.3 5.2 7.2 3.3 3.3
1020 3660 0.1 1.3 4.9 6.6 3.0 3.0
4. Unlined straight round ducts
Diameter, mm 63 125 250 500 1000 2000 4000
180 0.1 0.1 0.16 0.16 0.33 0.33 0.33
380 0.1 0.1 0.1 0.16 0.23 0.23 0.23
760 0.07 0.07 0.07 0.1 0.16 0.16 0.16
1520 0.03 0.03 0.03 0.07 0.07 0.07 0.07
5. Acoustically lined round ducts with 25mm lining
Diameter, mm 63 125 250 500 1000 2000 4000 8000
150 1.25 1.94 3.05 5.02 7.12 7.58 6.69 4.13
205 1.05 1.77 2.92 4.92 7.19 7.12 6.00 3.87
255 0.89 1.64 2.79 4.86 7.22 6.69 5.38 3.67
305 0.75 1.51 2.66 4.76 7.15 6.27 4.86 3.44
355 0.62 1.38 2.53 4.69 7.02 5.87 4.40 3.28
405 0.52 1.25 2.4 4.59 6.82 5.48 3.97 3.12
460 0.43 1.15 2.26 4.49 6.59 5.12 3.61 2.95
510 0.36 1.02 2.13 4.4 6.30 4.00 3.28 2.85
560 0.26 0.92 2 4.3 5.97 4.40 3.02 2.72
610 0.23 0.82 1.87 4.2 5.61 4.07 2.79 2.62
660 0.16 0.72 1.74 4.07 5.22 3.74 2.59 2.53
710 0.1 0.62 1.61 3.94 4.79 3.41 2.43 2.43
760 0.07 0.52 1.47 3.81 4.36 3.12 2.26 2.33
815 0.03 0.46 1.338 3.67 3.94 2.85 2.17 2.26
865 0 0.36 1.25 3.51 3.51 2.59 2.07 2.17
915 0 0.26 1.15 3.35 3.05 2.33 1.97 2.10
965 0 0.2 1.02 3.15 2.62 2.10 1.90 2.00
1015 0 0.1 0.92 2.99 2.23 1.87 1.80 1.90
1070 0 0.03 0.82 2.76 1.84 1.64 1.74 1.80
1120 0 0 0.75 2.56 1.48 1.44 1.67 1.71
1170 0 0 0.66 2.33 1.15 1.28 1.57 1.57
1220 0 0 0.59 2.07 0.85 1.12 1.48 1.44
1270 0 0 0.49 1.8 0.62 0.95 1.35 1.31
1320 0 0 0.46 1.51 0.43 0.82 1.21 1.12
1370 0 0 0.39 1.21 0.30 0.72 1.02 0.95
1420 0 0 0.33 0.9 0.26 0.59 0.82 0.72
1475 0 0 0.3 0.56 0.26 0.42 0.59 0.49
1525 0 0 0.26 0.52 0.33 0.46 0.30 0.23
6. Acoustically lined round ducts with 50mm lining
Diameter, mm 63 125 250 500 1000 2000 4000 8000
150 1.84 2.62 4.49 7.38 7.12 7.58 6.69 4.13
205 1.67 2.46 4.36 7.32 7.19 7.12 6.00 3.87
255 1.51 2.33 4.23 7.22 7.22 6.69 5.38 3.67
305 1.38 2.2 4.1 7.15 7.15 6.27 4.86 3.44
355 1.25 2.07 3.9 7.05 7.02 5.87 4.40 3.28
405 1.15 1.94 3.84 6.96 6.82 5.48 3.97 3.12
460 1.05 1.84 3.71 6.89 6.59 5.12 3.61 2.95
510 0.95 1.71 3.58 6.79 6.30 4.76 3.28 2.85
560 0.89 1.61 3.44 6.66 5.97 4.40 3.02 2.72
610 0.82 1.51 3.31 6.56 5.61 4.07 2.79 2.62
660 0.79 1.41 3.18 6.43 5.22 3.74 2.59 2.53
710 0.72 1.31 3.05 6.33 4.79 3.41 2.43 2.43
760 0.69 1.21 2.95 6.17 4.36 3.12 2.26 2.33
815 0.66 1.12 2.82 6.04 3.94 2.85 2.17 2.26
865 0.62 1.05 2.69 5.87 3.51 2.59 2.07 2.17
915 0.59 0.95 2.59 5.71 3.05 2.33 1.97 2.10
965 0.56 0.89 2.49 5.54 2.62 2.10 1.90 2.00
1015 0.52 0.79 2.4 5.35 2.23 1.87 1.80 1.90
1070 0.49 0.72 2.3 5.15 1.84 1.64 1.74 1.80
1120 0.43 0.66 2.2 4.92 1.48 1.44 1.67 1.71
1170 0.39 0.56 2.1 4.69 1.15 1.28 1.57 1.57
1220 0.36 0.49 2.03 4.46 0.85 1.12 1.48 1.44
1270 0.3 0.9 1.97 4.2 0.62 0.95 1.35 1.31
1320 0.23 0.33 1.9 3.9 0.43 0.82 1.21 1.12
1370 0.16 0.26 1.84 3.61 0.30 0.72 1.02 0.95
1420 0.07 0.16 1.8 3.28 0.26 0.59 0.82 0.72
1475 0 0.1 1.74 2.95 0.26 0.52 0.59 0.49
1525 0 0 1.74 2.59 0.33 0.46 0.30 0.23

[Back to top]

Flex Duct

Looks up the values from the ASHRAE tables for flexible ducts, see below. No interpolation is made, prefixed lengths can be selected from a dropdown list.

Flexible Duct Insertion Loss
*Diameter Length 63 125 250 500 1000 2000 4000
100 0.9 2 3 3 8 9 11 7
100 1.8 3 6 6 16 19 21 14
100 2.7 5 8 9 23 28 32 20
100 3.7 6 11 12 31 37 42 27
125 0.9 2 3 4 8 10 10 7
125 1.8 4 6 7 16 19 21 13
125 2.7 5 9 11 24 29 31 20
125 3.7 7 12 14 32 38 41 26
150 0.9 2 3 4 8 10 10 7
150 1.8 4 6 9 17 19 20 13
150 2.7 6 9 13 25 29 30 20
150 3.7 8 12 17 33 38 40 26
175 0.9 2 3 5 8 9 10 6
175 1.8 4 6 10 17 19 19 13
175 2.7 6 9 14 5 28 29 19
175 3.7 9 12 19 33 37 38 25
200 0.9 2 3 5 8 9 9 6
200 1.8 4 6 11 17 19 19 12
200 2.7 6 8 16 25 28 28 18
200 3.7 8 11 21 33 37 37 24
225 0.9 2 3 6 8 9 9 6
225 1.8 4 6 11 17 19 19 12
225 2.7 6 8 17 25 28 27 17
225 3.7 8 11 22 33 37 36 22
250 0.9 2 3 6 8 9 9 5
250 1.8 4 5 11 16 18 17 11
250 2.7 6 8 17 24 27 26 16
250 3.7 8 10 22 32 36 34 21
300 0.9 2 2 5 8 9 8 5
300 1.8 3 5 10 15 17 16 9
300 2.7 5 7 15 23 26 23 14
300 3.7 7 9 20 30 34 31 18
350 0.9 1 2 4 7 8 7 4
350 1.8 3 4 8 14 16 14 7
350 2.7 4 5 12 20 23 20 11
350 3.7 5 7 16 27 31 27 14
400 0.9 1 1 2 6 7 6 2
400 1.8 1 2 5 12 14 12 5
400 2.7 2 3 7 17 21 17 7
400 3.7 2 4 9 23 28 23 9

[Back to top]

End Reflection Loss (ERL)

Function GetERL(TerminationType As String, freq As String, DuctArea As Double)

End Reflection Loss (ERL) happens as sound waves in the low end of the frequency spectrum exit a duct into a room, some of that sound energy gets reflected back into the duct.

frmERL.JPG

The formula for End Reflection Loss is given in the ASHRAE handbook, Chapter 48 ”Noise and Vibration Control”:

GetERL = -10*log10(1 + ((A1 * c0) / (f * dia * Pi)) ^ A2)

There are two types of duct terminations defined in the handbook:

  • Flush
  • Free Space

The duct termination changes the coefficients A1 and A2, as follows:

Flush Free
A1 0.7 1
A2 2 2

Note that the variable freq is converted to a value using the Trace function freqStr2Num(freq)

[Back to top]

Elbow / Bend

Function GetElbowLoss(fstr As String, W As Double, elbowShape As String, DuctLining As String, VaneType As String)

ElbowsDiagram.JPG

[Back to top]

Duct Split

frmDuctSplit.JPG

When sound traveling in a duct encounters a junction, the sound power contained in the main duct is distributed between the branches associated with the junction. The dominant component of this distribution is associated with the energy division between ducts which is determined by the ratio of cross-sectional areas. The following table lists some example values.

SBi/∑SBi Attenuation, dB SBi/∑SBi Attenuation, dB
1 0 0.1 10
0.8 1 0.08 11
0.63 2 0.063 12
0.5 3 0.05 13
0.4 4 0.04 14
0.32 5 0.032 15
0.25 6 0.025 16
0.2 7 0.02 17
0.16 8 0.016 18
0.12 9 0.012 19

[Back to top]

Silencer

Silencers are special ducts with perforated sound absorptive linings, containing elements to channel the air. These elements are known as 'splitters' or 'pods'. Silencers are designed to reduce noise travelling down ducts, but may also be used to reduce sound transmitted between spaces, also known as crosstalk.

RectSilencer.png CircSilencer.png

The splitters or pods reduce the cross-sectional area (open area) of the duct, thereby inducing a static pressure on the system. Silencers typically come in both rectangular and circular cross sections, varying lengths, and varying open face areas. A smaller open area results in a larger static pressure on the system, and vice versa.

SilencerCrossSection.png

The Silencer function in Trace can either provide the insertion loss for a silencer given a known model code, or can test all silencer models to find those which meet a given noise target. All silencer data is taken from the Fantech silencer database. This data is stored in

  • ...Trace_directory\DATA\Silencers.txt

This file contains a list of octave band insertion losses for a number of silencers, as well as the model number, length, and free area (percentage). Refer to https://www.fantech.com.au/attenuator.aspx for the default data set. Additional rows of data may be added to the text file from any source, provided it follows the same layout.

frmSilencer.JPG

Search by model number

In order to search for a known silencer model:

  • Type the part of the model number which is known (RS, RT, 15C etc...)
  • Hit enter or click the 'Search' button. The list will then be searched for matching text strings.
  • Select a model within the search results. The insertion loss, free area %, and the length are shown.
  • Click 'Insert' to add the silencer to the spreadsheet.

Solver

The solver function takes the following inputs:

Function SolveForSilencer(SilRng As String, targetRng As String, NRGoal As Boolean, NoiseGoal As Double)

In order to use the ‘find suitable silencer’ function:

  • Define the 'silencer range' as any cell in the calculation row where the silencer is to be inserted.
  • Set the 'target range' to any cell in the row where noise criteria has been calculated (usually the final line in the calculation).
  • Select either the 'Overall dBA' or 'NR' to define the Noise Goal.
  • Click 'Search'. The function will then search for a suitable silencer by testing the list of options against the Noise Goal.
  • Select a model within the search results. The insertion loss, free area %, and the length are shown.
  • Click 'Insert' to add the silencer to the spreadsheet.

Acoustic Louvres

Inserts the transmission loss from louvres in text file:

  • ...Trace_directory\Louvres.txt

frmLouvres.JPG

The values are into the sheet, including a comment containing the length and open area of the louvre.

[Back to top]

Directivity

Duct Directivity

Function DuctDirLoss2(freq As String, angle As Double, diameter As Double)

This function is based on Directivity Loss at Duct Termination which used empirically measured data to determine directivity from cylindrical ducts of various sizes.

Sound emanating from a duct will vary according to frequency, duct diameter, and angle. Generally speaking as the angle from the normal line of the duct increases, the sound level decreases. The following figure shows how the angles are defined:

DuctDirectivity

The values used in the function are shown in the following table:

Directivity loss vs angle and frequency for various duct diameters
Diameter Angle 63 125 250 500 1000 2000 4000 8000
305 0 0 0 0 0 0 0 0 0
305 15 0 0 0 0 0 0 -4 -1
305 30 0 0 0 -1 -2 0 -6 -3
305 45 -1 -1 -1 -2 -4 -4 -10 -8
305 50 -1 -2 -2 -3 -7 -8 -13 -12
305 75 0 -1 -2 -4 -9 -11 -15 -15
305 90 -2 -3 -4 -6 -12 -16 -22 -23
305 105 -1 -2 -4 -6 -13 -19 -26 -28
305 120 -3 -4 -6 -9 -16 -22 -30 -31
305 135 -2 -3 -5 -8 -15 -22 -30 -32
305 150 -3 -4 -6 -8 -17 -22 -31 -31
305 165 -5 -5 -7 -10 -18 -24 -33 -34
610 0 0 0 0 0 0 0 0 0
610 -15 -1 0 -1 -1 -2 -5 -6 -6
610 30 -1 0 -1 -3 -5 -5 -8 -9
610 45 -2 -1 -2 -6 -8 -10 -11 -12
610 50 -2 -1 -4 -8 -10 -13 -15 -18
610 75 -2 -2 -6 -10 -14 -19 -22 -25
610 90 -2 -3 -7 -12 -16 -22 -27 -31
610 105 -2 -3 -7 -13 -18 -24 -29 -33
610 120 -3 -3 -9 -14 -19 -24 -31 -36
610 135 -5 -3 -10 -14 -19 -26 -32 -36
610 150 -5 -4 -10 -14 -20 -27 -34 -38
610 165 -5 -4 -10 -15 -20 -28 -34 -39
914 0 0 0 0 0 0 0 0 0
914 15 0 -1 -1 -1 -3 -1 -1 -3
914 30 0 -2 -2 -3 -6 -7 -2 -7
914 45 0 -2 -4 -4 -8 -12 -7 -13
914 50 0 -3 -7 -8 -11 -14 -11 -19
914 75 -1 -3 -9 -11 -14 -18 -15 -24
914 90 -2 -5 -12 -14 -18 -22 -22 -31
914 105 -4 -6 -14 -16 -20 -23 -25 -34
914 120 -4 -6 -14 -16 -20 -23 -25 -34
914 135 -5 -9 -17 -19 -20 -25 -27 -36
914 150 -5 -10 -20 -20 -20 -26 -28 -37
914 165 -6 -11 -20 -20 -22 -27 -29 -38

[Back to top]

Louvre Directivity

Based on Noise Control in Building Services, the directivity depends on the frequency and width or height of the louvre/grille at zero degrees. Then the at different angles is found in the second table.

LouvreGrilleDirectivity_SRL(fStr,WidthOrHeight,Angle)

Table 1 - Louvres

Width or Height 63 125 250 500 1k 2k 4k 8k
0.5 2 2.5 3 3.5 4 4.5 4.5 4.5
1 2.5 3 3.5 4 4.5 4.5 4.5 4.5
1.5 3 3.5 4 4.5 4.5 4.5 4.5 4.5
2 3 3.5 4 4.5 4.5 4.5 4.5 4.5
2.5 3.5 4 4.5 4.5 4.5 4.5 4.5 4.5
3.5 3.5 4 4.5 4.5 4.5 4.5 4.5 4.5
4.5 4 4 4.5 4.5 4.5 4.5 4.5 4.5
5.5 4 4.5 4.5 4.5 4.5 4.5 4.5 4.5
6 4 4.5 4.5 4.5 4.5 4.5 4.5 4.5
7.5 4 4.5 4.5 4.5 4.5 4.5 4.5 4.5
9 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
10.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
12 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
15 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

Table 2 - Directivity Angle theta (degrees)

0 20 40 60 80 100 120 140
2 2 1.5 1.5 1 1 0.5 0
2.5 2.5 2 1.5 1 0.5 0 -1
3 3 2 1.5 0.5 -0.5 -1.5 -3
3.5 3 2.5 1 -0.5 -2 -4.5 -7.5
4 3.5 2.5 1 -2 -6.5 -12 -15
4.5 4 3 0 -15 -20 -20 -20

[Back to top]

Plenum

Calculates loss through a plenum, according to ASHRAE method.

Function PlenumLoss_ASHRAE(fstr As String, L As Long, W As Long, H As Long, DuctInL As Single, DuctInW As Single, DuctOutL As Single, DuctOutW As Single, Q As Integer, r_h As Long, r_v As Long, PlenumLiningType As String, UnlinedType As String, WallEffect As String, applyElbowEffect As Boolean, Optional OneThirdsMode As Boolean)

Plenum Form

The method is quite complex and includes several lookup tables within the reference document. Implementation has been in one third octave bands, which resolve down to octave bands. The general structure of the calculation is:

  • For one-third octave bands:
    • Convert input units into metres
    • Calculate cutoff frequency f_co
    • Calculate Surface Area Stotal and Volume PlenumVolume
    • Calculate distance from inlet to outlet R
    • Calculate Area Coefficient A_f
    • Apply Offset Angle Effect AngleEffect
    • Apply Wall Effect W_e
    • Calculate the Plenum Transmission Loss above and below the critical frequency
  • Calculate the transmission loss for Octave Bands, based on the One-third Octave Bands

Cutoff Frequency

The cutoff frequency is the frequency above which plane waves no longer propagate in a duct. It is a function of diameter of the round duct or the larger cross-sectional dimension of rectangular duct and is given by:

f_co= SpeedofSound / 2 * Largest dimension of the duct (for rectangular ducts)

or

f_co= 0.586*(SpeedofSound / diameter of the duct (for round ducts)

Elbow Effect

From Table 15 of ASHRAE:

Band, Hz 50 63 80 100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000
> fco 0 0 0 0 0 0 3 6 3 3 2 3 3 2 2 2 2 2 2 2 1
≤ fco 2 3 6 5 3 0 -2 -3 -1 0 0 0 0 0 0 0 0 0 0 0 0

Offset Angle Effect

The offset angle effect is calculated using a lookup table by comparing the offset angle between the inlet and the outlet of the plenum and the frequency of consideration. The lookup table varies for f ≤ f_co and f ≥ f_co. The function below returns the values from a lookup table.

Function PlenumOAE(f_input As Double, f_co As Double, Angle_input As Single)

The lookup tables are as follows:

f ≤ fco

Band, Hz 50 63 80 100 125 160 200 250 315 400 500 630
0.0 degrees 0 0 0 0 0 0 0 0 0 0 0 N/A
15.0 degrees 0 0 0 1 1 0 0 1 4 2 1 N/A
22.5 degrees 0 0 -1 0 0 -1 -1 2 6 4 3 N/A
30.0 degrees 0 0 -3 -2 -2 -2 -2 3 8 6 6 N/A
37.5 degrees 0 0 -4 -3 -4 -3 -3 5 10 9 10 N/A
45.0 degrees 0 0 -6 -6 -6 -4 -5 7 14 13 15 N/A

f > fco |

Band, Hz 160 200 250 315 400 500 630 800 1000 1.25k 1.6k 2k 2.5k 3.15k 4k 5k
0.0 degrees N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15.0 degrees N/A 1 2 1 1 0 1 1 1 0 0 1 1 0 0 0
22.5 degrees N/A 4 4 2 2 1 2 2 2 2 1 2 2 2 2 3
30.0 degrees N/A 9 8 3 3 2 3 2 4 4 1 4 3 4 5 6
37.5 degrees N/A 14 13 4 4 4 5 3 6 6 2 7 5 6 8 10
45.0 degrees N/A 20 19 5 6 5 7 3 9 9 3 10 8 9 12 15

Area Coefficient

The area coefficient Function PlenumAreaCoefficient(f_input As Double, Vol As Single)

The values are taken from Table 13 of ASHRAE.

Band, Hz 50 63 80 100 125 160 200 250 315 400 500
<1.5m3 plenum volume 1.4 1.0 1.1 2.3 2.4 2.0 1.0 2.2 0.7 0.7 1.1
>=1.5m3 plenum volume 0.3 0.3 0.3 0.3 0.4 0.4 0.3 0.4 0.3 0.2 0.2

Wall Effect

The wall effect considers low frequency characteristics of Plenum Transmission Loss(50Hz to 500Hz). The function is:

Function PlenumWallEffect(f As Double, WallType As Integer)

The values are taken from Table 13 of ASHRAE.

Band, Hz 50 63 80 100 125 160 200 250 315 400 500
25mm, 40kg/m3 (fabric facing) 1 1 2 2 2 3 4 5 6 8 9
50mm, 40kg/m3 (fabric facing) 1 2 2 2 3 4 10 9 12 13 13
100mm, 40kg/m3 (perf facing) 0 3 3 4 6 11 16 13 14 13 12
200mm, 40kg/m3 (perf facing) 1 7 9 12 12 11 15 12 14 14 13
100mm (tuned, no media) 0 1 2 1 1 0 4 1 5 7 8
100mm, 40kg/m3 (double solid metal) 0 3 7 6 4 2 3 1 2 1 0

Transmission Loss

Below the cutoff frequency:

PlenumLossOneThirdOctave_ASHRAE = _ -1 * Application.WorksheetFunction.Min((A_f * Stotal) _ + W_e + AngleEffect, 20) 'limit to 20dB, output is negative

Above the cutoff frequency:

PlenumLossOneThirdOctave_ASHRAE = -1 * (b * (((OutletArea * Q / _ (4 * Application.WorksheetFunction.Pi() * (R ^ 2))) _ + AbsorptionArea(A_index)) ^ n) + AngleEffect)

where

b = 3.505 n = -0.359

Conversion to Octaves

If required, the conversion to octaves is done with the following formula:

PlenumLoss_ASHRAE = 10 * Application.WorksheetFunction.Log10((1 / 3) * ((10 ^ (Loss1 / 10)) + (10 ^ (Loss2 / 10)) + (10 ^ (Loss3 / 10))))

[Back to top]

Duct Breakout

Function GetDuctBreakout(freq As String, H As Single, w As Single, L As Single, MaterialDensity As Single, DuctWallThickness As Single)

This function uses the NEBB method to calculate sound breakout from a duct, based on the duct dimensions and duct wall properties.

BreakoutDiagram.JPG

For rectangular ducts, the transmission loss for breakout is divided into regions by frequency: a region where plane mode transmission within the duct is dominant; and a region where multimode transmission is dominant as shown here:

BreakoutGraph.JPG

If plane mode predominates, TLout is:

TLout = 10 * Application.WorksheetFunction.Log10((f * (SurfaceMass ^ 2)) / (w + H)) + 17

While in multi-mode, TLout is:

TLout = 20 * Application.WorksheetFunction.Log10(f * SurfaceMass) – 45

However, TLout must be no greater than 45 dB:

If TLout > 45 Then TLout = 45

In addition, when the fundamental wall resonance is below the frequency range of interest or the minimum transmission loss is dependent on duct dimensions, minimum TLout is:

TLoutMin = 10 * Application.WorksheetFunction.Log10(2 * L * 1000 * ((1 / w) + (1 / H)))

Duct Break-in

Function GetDuctBreakIn(freq As String, H As Single, w As Single, L As Single, MaterialDensity As Single, DuctWallThickness As Single)

Break-in is a phenomenon that covers the transmission of sound energy into a duct through the duct walls from the space outside the duct.

The break-in transmission loss is divided in two regions separated by the frequency for the lowest acoustic cross-mode in the duct or the cutoff frequency.

If the frequency ≤ cutoff frequency, TLin is the larger value of the following equation:

TLin_a = TLout - 4 - (10 * Application.WorksheetFunction.Log(a / b)) + (20 * Application.WorksheetFunction.Log(f / f1))

TLin_b = 10 * Application.WorksheetFunction.Log((L * 1000) * ((1 / a) + (1 / b)))

In case, the frequency > cutoff frequency, TLin is:

TLin1 = TLout - 3

The sound power being transmitted from the exterior of the duct will depend on the type of sound field present in the space.

[Back to top]

Regenerated noise

Damper

Calculates regenerated noise from Dampers using the following methods:

  • NEBB
  • ASHRAE

Damper Regen

The NEBB method calls the following function:

DamperRegen_NEBB(fstr As String, FlowRate As Double, PressureLoss As Double, DuctHeight As Double, DuctWidth As Double, MultiBlade As Boolean, Optional mCubedPerSecond As Boolean)

The ASHRAE method looks up spectra from the source document for different air velocities.

[Back to top]

Elbow/bend

Calculates regenerated noise from Elbows/Bends using the following methods:

  • NEBB
  • ASHRAE

Damper Regen

The NEBB method calls one of the following functions:

Function ElbowWithVanesRegen_NEBB(fstr As String, FlowRate As Double, dP As Double, DuctWidth As Double, DuctHeight As Double, CordLength As Double, numVanes As Integer, Optional mCubedPerSecond As Boolean)

Function ElbowOrJunctionRegen_NEBB(fstr As String, FlowRate As Double, IsMainCircular As Boolean, DuctWidth As Double, DuctHeight As Double, BranchFlowRate As Double, IsBranchCircular As Boolean, DuctBranchWidth As Double, DuctBranchHeight As Double, Radius As Double, IsTurbulent As Boolean, JunctionType As Integer, BranchRegen As Boolean, Optional mCubedPerSecond As Boolean)

[Back to top]

Silencer

Calculates regenerated noise from splitter-silencers from two manufacturers.

Silencer Regen

[Back to top]

⚠️ **GitHub.com Fallback** ⚠️