Python environment setup - MaterSim/CMS GitHub Wiki
1. Conda
It is usually good to use the integrated version of python like conda for the beginners. Download and install the version of conda for your operating system from http://conda.pydata.org/miniconda.html.
$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
# If Mac
$ bash Miniconda3-latest-MacOSX-x86_64.sh
# If Linux
$ bash Miniconda3-latest-Linux-x86_64.sh
pymatgen
$ conda install -c matsci pymatgen
ase
$ conda install -c jochym python-ase
or
$ pip install --upgrade --user ase
glibc
This is a very annoying issue if you work with old centOS distribution. Unfortunately, a lot of supercomputing clusters are still using this old centOS version. One cannot update glibc on Centos 6 safely. However you can install 2.14 alongside 2.12 easily, then use it to compile projects etc. Here is how:
mkdir ~/glibc_install; cd ~/glibc_install
wget http://ftp.gnu.org/gnu/glibc/glibc-2.14.tar.gz
tar zxvf glibc-2.14.tar.gz
cd glibc-2.14
mkdir build
cd build
../configure --prefix=/opt/glibc-2.14
make -j4
sudo make install
export LD_LIBRARY_PATH=/opt/glibc-2.14/lib
slow installation from China
Conda installation might be very slow in China. In this case, one could use the mirror provided from the following website
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
More instructions could be found here
2, Direct compilation from the python source code.
Conda is great, but not optimal. It is not efficient for large scale numerical calculation, and sometimes you will find you local library like glibc is not compatible with conda. Therefore, it is better compile python from the source code, instead of Conda.
$ wget https://www.python.org/ftp/python/3.5.6/Python-3.5.6.tgz
$ tar -xf Python-3.5.6.tgz
$ cd Python-3.5.6
$ ./configure --prefix= /folder address/
$ make
$ make test
$ make install
to install pymatgen and ase
$ pip install pymatgen
$ pip install ase