Models - MalondaClement/pipeline GitHub Wiki
Models Module
Models📦
List of all models available
- Pytorch :
- DeepLabV3_Resnet50;
- DeepLabV3_Resnet101;
- DeepLabV3_MobileNetV3;
- FCN_Resnet50;
- FCN_Resnet101.
- External :
- DenseASPP121;
- DenseASPP161;
- DenseASPP169;
- DenseASPP201;
- MobileNetDenseASPP;
- UNet;
DenseASPP
class models.DenseASPP.DenseASPP(self, model_cfg, num_classes=19, output_stride=8)
[source]
Parameters
- model_cfg - Configure model (configurations are in
models.configs
). Four configurations are available for this model: DenseASPP121, DenseASPP161, DenseASPP169 and DenseASPP201. - num_classes - Number of classes in the dataset
- output_stride - Configure output size (can only be
8
or16
)
Returns
- DenseASPP
Return type
torch.nn.Module
MobileNetDenseASPP
class models.MobileNetDenseASPP.DenseASPP(self, model_cfg, num_classes=19, output_stride=8)
[source]
Parameters
- model_cfg - Configure model (configurations are in
models.configs
). Only one config is available for this model: MobileNetDenseASPP. - num_classes - Number of classes in the dataset
- output_stride - Configure output size (can only be
8
or16
)
Returns
- MobileNetDenseASPP
Return type
torch.nn.Module
UNet
class models.UNet.UNet(self, num_classes, batchnorm=False)
[source]
Parameters
- num_classes - Number of classes in the dataset
- batchnorm -
Returns
- UNet
Return type
torch.nn.Module
Utils 🧰
[source]
Get Model
models.utils.get_model(args)
This function takes args
object and uses args.model
value to return model. Updates args.is_pytorch_model
value and return model
and args
.
Parameters
- args - Object with all arguments used during training.
Returns
- (model, args)
Return type
torch.nn.Module
,helpers.ARGS.ARGS
Example
from helpers.ARGS import ARGS
from datasets.tunnel import Tunnel
Dataset = Tunnel
args = ARGS("DenseASPP121", "dataset_path", len(Dataset.validClasses), labels_type="csv", batch_size=8, epochs=300)
model, args = get_model(args)
Get Optimizer (:warning: NOT IMPLEMENTED)
models.utils.get_optimizer(args)
Parameters
- args - Object with all arguments used during training.