교재의 끝판왕 8장 deep_convnet.py 돌린 결과 - LOPES-HUFS/DeepLearningFromForR GitHub Wiki

이 모델은 20에폭을 돌립니다. 돌린 결과는 아래와 같습니다. 생각보다 오래걸림 그러나 보시면 알겠지만 결과는 대박임!

=== epoch:1, train acc:0.099, test acc:0.1 ===
=== epoch:2, train acc:0.976, test acc:0.975 ===
=== epoch:3, train acc:0.977, test acc:0.982 ===
=== epoch:4, train acc:0.99, test acc:0.984 ===
=== epoch:5, train acc:0.992, test acc:0.987 ===
=== epoch:6, train acc:0.991, test acc:0.98 ===
=== epoch:7, train acc:0.991, test acc:0.991 ===
=== epoch:8, train acc:0.994, test acc:0.984 ===
=== epoch:9, train acc:0.99, test acc:0.99 ===
=== epoch:10, train acc:0.994, test acc:0.99 ===
=== epoch:11, train acc:0.995, test acc:0.993 ===
=== epoch:12, train acc:0.994, test acc:0.993 ===
=== epoch:13, train acc:0.998, test acc:0.991 ===
=== epoch:14, train acc:0.996, test acc:0.989 ===
=== epoch:15, train acc:0.995, test acc:0.984 ===
=== epoch:16, train acc:0.997, test acc:0.992 ===
=== epoch:17, train acc:0.998, test acc:0.993 ===
=== epoch:18, train acc:1.0, test acc:0.99 ===
=== epoch:19, train acc:1.0, test acc:0.991 ===
=== epoch:20, train acc:0.999, test acc:0.991 ===
=============== Final Test Accuracy ===============
test acc:0.9943
Saved Network Parameters!

그리고 세미나 중 논란이 되었던 loss 값 그래프 20 에폭을 학습한 후 loss

자료 보존 차원에서 윗 그래프 그리는데 사용한 R 코드.

> library(tidyverse)
─ Attaching packages ─────────────────────────────────────────────────────────── tidyverse 1.3.0 ─
✔ ggplot2 3.3.0purrr   0.3.4tibble  3.0.1dplyr   1.0.0tidyr   1.1.0stringr 1.4.0readr   1.3.1forcats 0.5.0Conflicts ───────────────────────────────────────────────────────────── tidyverse_conflicts() ─
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
> loss <- read_csv(file="deep_convnet_loss.csv", col_names=FALSE)
Parsed with column specification:
cols(
  X1 = col_double()
)
> loss
# A tibble: 12,000 x 1
      X1
   <dbl>
 1  2.29
 2  2.29
 3  2.32
 4  2.28
 5  2.27
 6  2.28
 7  2.30
 8  2.27
 9  2.26
10  2.27
# … with 11,990 more rows
> mean(loss$X1)
[1] 0.9099704
> median(loss$X1)
[1] 0.8918075
> plot(loss$X1, type="l")
⚠️ **GitHub.com Fallback** ⚠️